Cargando…
Active machine learning for transmembrane helix prediction
BACKGROUND: About 30% of genes code for membrane proteins, which are involved in a wide variety of crucial biological functions. Despite their importance, experimentally determined structures correspond to only about 1.7% of protein structures deposited in the Protein Data Bank due to the difficulty...
Autores principales: | Osmanbeyoglu, Hatice U, Wehner, Jessica A, Carbonell, Jaime G, Ganapathiraju, Madhavi K |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009531/ https://www.ncbi.nlm.nih.gov/pubmed/20122233 http://dx.doi.org/10.1186/1471-2105-11-S1-S58 |
Ejemplares similares
-
Transmembrane helix prediction using amino acid property features and latent semantic analysis
por: Ganapathiraju, Madhavi, et al.
Publicado: (2008) -
N-gram analysis of 970 microbial organisms reveals presence of biological language models
por: Osmanbeyoglu, Hatice Ulku, et al.
Publicado: (2011) -
Active learning for human protein-protein interaction prediction
por: Mohamed, Thahir P, et al.
Publicado: (2010) -
Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units
por: Paulet, Damien, et al.
Publicado: (2011) -
Transmembrane helix: simple or complex
por: Wong, Wing-Cheong, et al.
Publicado: (2012)