Cargando…

Reactivating aberrantly hypermethylated p15 gene in leukemic T cells by a phenylhexyl isothiocyanate mediated inter-active mechanism on DNA and chromatin

BACKGROUND: We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner. METHODS: To investigate the effect of PHI,...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Shaohong, Ma, Xudong, Huang, Yiqun, Xu, Yunlu, Zheng, Ruiji, Chiao, Jen-Wei
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009608/
https://www.ncbi.nlm.nih.gov/pubmed/21114827
http://dx.doi.org/10.1186/1756-8722-3-48
Descripción
Sumario:BACKGROUND: We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner. METHODS: To investigate the effect of PHI, a novel histone deacetylases inhibitor (HDACi), on demethylation and activation of transcription of p15 in acute lymphoid leukemia cell line Molt-4, and to further decipher the potential mechanism of demethylation, DNA sequencing and modified methylation specific PCR (MSP) were used to screen p15-M and p15-U mRNA after Molt-4 cells were treated with PHI, 5-Aza and TSA. DNA methyltransferase 1 (DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein, acetylated histone H3 and histone H4 were detected by Western Blot. RESULTS: The gene p15 in Molt-4 cells was hypermethylated and inactive. Hypermethylation of gene p15 was attenuated and p15 gene was activated de novo after 5 days exposure to PHI in a concentration-dependent manner. DNMT1 and DNMT3B were inhibited by PHI (P < 0.05). Alteration of DNMT3A was not significant at those concentrations. Acetylated histone H3 and histone H4 were accumulated markedly after exposure to PHI. CONCLUSION: PHI could induce both DNA demethylation and acetylated H3 and H4 accumulation in Molt-4 cells. Hypermethylation of gene p15 was reversed and p15 transcription could be reactivated de novo by PHI.