Cargando…

Cdc42 localization and cell polarity depend on membrane traffic

Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its...

Descripción completa

Detalles Bibliográficos
Autores principales: Osmani, Naël, Peglion, Florent, Chavrier, Philippe, Etienne-Manneville, Sandrine
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010071/
https://www.ncbi.nlm.nih.gov/pubmed/21173111
http://dx.doi.org/10.1083/jcb.201003091
Descripción
Sumario:Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6–aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.