Cargando…

Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity

Runx2 is indispensable for osteoblast lineage commitment and early differentiation but also blocks osteoblast maturation, thereby causing bone loss in Runx2 transgenic mice. Zinc finger protein 521 (Zfp521) antagonizes Runx2 in vivo. Eliminating one Zfp521 allele mitigates the cleidocranial dysplasi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hesse, Eric, Saito, Hiroaki, Kiviranta, Riku, Correa, Diego, Yamana, Kei, Neff, Lynn, Toben, Daniel, Duda, Georg, Atfi, Azeddine, Geoffroy, Valérie, Horne, William C., Baron, Roland
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010073/
https://www.ncbi.nlm.nih.gov/pubmed/21173110
http://dx.doi.org/10.1083/jcb.201009107
Descripción
Sumario:Runx2 is indispensable for osteoblast lineage commitment and early differentiation but also blocks osteoblast maturation, thereby causing bone loss in Runx2 transgenic mice. Zinc finger protein 521 (Zfp521) antagonizes Runx2 in vivo. Eliminating one Zfp521 allele mitigates the cleidocranial dysplasia–like phenotype of newborn Runx2(+/−) mice, whereas overexpressing Zfp521 exacerbates it. Overexpressing Zfp521 also reverses the severe osteopenia of adult Runx2 transgenic mice. Zfp521 binds to both Runx2 and histone deacetylase 3 (HDAC3), promotes their association, and antagonizes Runx2 transcriptional activity in an HDAC3-dependent manner. Mutating the Zfp521 zinc finger domains 6 and 26 reduces the binding of Zfp521 to Runx2 and inhibition of Runx2 activity. These data provide evidence that Zfp521 antagonizes Runx2 in vivo and thereby regulates two stages of osteoblast development, early during mesenchymal cell lineage commitment and later during osteoblast maturation. Thus, the balance and molecular interplay between Zfp521 and Runx2 contribute to the control of osteoblast differentiation, skeletal development, and bone homeostasis.