Cargando…
Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum
A β-glucosidase was purified from the digestive fluid of the palm weevil Rhynchophorus palmarum L. (Coleoptera: Curculionidae) by chromatography on anion-exchange, gel filtration, and hydrophobic interaction columns. The preparation was shown to be homogeneous on polyacrylamide gels, β-glucosidase i...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
University of Wisconsin Library
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011871/ https://www.ncbi.nlm.nih.gov/pubmed/19611239 http://dx.doi.org/10.1673/031.009.0401 |
_version_ | 1782195042108047360 |
---|---|
author | Yapi Assoi Yapi, Désiré Gnakri, Dago Lamine Niamke, Sebastien Patrice Kouame, Lucien |
author_facet | Yapi Assoi Yapi, Désiré Gnakri, Dago Lamine Niamke, Sebastien Patrice Kouame, Lucien |
author_sort | Yapi Assoi Yapi, Désiré |
collection | PubMed |
description | A β-glucosidase was purified from the digestive fluid of the palm weevil Rhynchophorus palmarum L. (Coleoptera: Curculionidae) by chromatography on anion-exchange, gel filtration, and hydrophobic interaction columns. The preparation was shown to be homogeneous on polyacrylamide gels, β-glucosidase is a monomeric protein with a molecular weight of 58 kDa based on its mobility in SDS-PAGE and 60 kDa based on gel filtration. Maximal β-glucosidase activity occurred at 55°C and pH 5.0. The purified β-glucosidase was stable at 37°C and its pH stability was in the range of 5.0–6.0. The enzyme readily hydrolyzed p-nitrophenyl-β-D-glucoside, cellobiose, cellodextrins and required strictly β-gluco configuration for activity. It cleaved glucose-glucose beta-(1–4) linkages better than β-(1–2), β-(1–3) and β-(1–6) linkages. The catalytic efficiency (K(cat)/K(M)) values for p-nitrophenyl-β-D-glucoside and cellobiose were respectively 240.48 mM(-1)s(-1) and 134.80 mM(-1)s(-1). Beta-glucosidase was capable of catalysing transglucosylation reactions. The yield of glucosylation of 2-phenylethanol (20 %), catalysed by the beta-glucosidase in the presence of cellobiose as glucosyl donor, is lower than those reported previously with conventional sources of beta-glucosidases. In addition, the optimum pH is different for the hydrolysis (pH 5.0) and transglucosylation reactions (pH 6.6). |
format | Text |
id | pubmed-3011871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | University of Wisconsin Library |
record_format | MEDLINE/PubMed |
spelling | pubmed-30118712011-09-01 Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum Yapi Assoi Yapi, Désiré Gnakri, Dago Lamine Niamke, Sebastien Patrice Kouame, Lucien J Insect Sci Article A β-glucosidase was purified from the digestive fluid of the palm weevil Rhynchophorus palmarum L. (Coleoptera: Curculionidae) by chromatography on anion-exchange, gel filtration, and hydrophobic interaction columns. The preparation was shown to be homogeneous on polyacrylamide gels, β-glucosidase is a monomeric protein with a molecular weight of 58 kDa based on its mobility in SDS-PAGE and 60 kDa based on gel filtration. Maximal β-glucosidase activity occurred at 55°C and pH 5.0. The purified β-glucosidase was stable at 37°C and its pH stability was in the range of 5.0–6.0. The enzyme readily hydrolyzed p-nitrophenyl-β-D-glucoside, cellobiose, cellodextrins and required strictly β-gluco configuration for activity. It cleaved glucose-glucose beta-(1–4) linkages better than β-(1–2), β-(1–3) and β-(1–6) linkages. The catalytic efficiency (K(cat)/K(M)) values for p-nitrophenyl-β-D-glucoside and cellobiose were respectively 240.48 mM(-1)s(-1) and 134.80 mM(-1)s(-1). Beta-glucosidase was capable of catalysing transglucosylation reactions. The yield of glucosylation of 2-phenylethanol (20 %), catalysed by the beta-glucosidase in the presence of cellobiose as glucosyl donor, is lower than those reported previously with conventional sources of beta-glucosidases. In addition, the optimum pH is different for the hydrolysis (pH 5.0) and transglucosylation reactions (pH 6.6). University of Wisconsin Library 2009-03-12 /pmc/articles/PMC3011871/ /pubmed/19611239 http://dx.doi.org/10.1673/031.009.0401 Text en © 2009 http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Yapi Assoi Yapi, Désiré Gnakri, Dago Lamine Niamke, Sebastien Patrice Kouame, Lucien Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum |
title | Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum |
title_full | Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum |
title_fullStr | Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum |
title_full_unstemmed | Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum |
title_short | Purification and Biochemical Characterization of a Specific β-Glucosidase from the Digestive Fluid of Larvae of the Palm Weevil, Rhynchophorus palmarum |
title_sort | purification and biochemical characterization of a specific β-glucosidase from the digestive fluid of larvae of the palm weevil, rhynchophorus palmarum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011871/ https://www.ncbi.nlm.nih.gov/pubmed/19611239 http://dx.doi.org/10.1673/031.009.0401 |
work_keys_str_mv | AT yapiassoiyapidesire purificationandbiochemicalcharacterizationofaspecificbglucosidasefromthedigestivefluidoflarvaeofthepalmweevilrhynchophoruspalmarum AT gnakridago purificationandbiochemicalcharacterizationofaspecificbglucosidasefromthedigestivefluidoflarvaeofthepalmweevilrhynchophoruspalmarum AT lamineniamkesebastien purificationandbiochemicalcharacterizationofaspecificbglucosidasefromthedigestivefluidoflarvaeofthepalmweevilrhynchophoruspalmarum AT patricekouamelucien purificationandbiochemicalcharacterizationofaspecificbglucosidasefromthedigestivefluidoflarvaeofthepalmweevilrhynchophoruspalmarum |