Cargando…
mt-Nd2(a) Modifies Resistance Against Autoimmune Type 1 Diabetes in NOD Mice at the Level of the Pancreatic β-Cell
OBJECTIVE: To investigate whether a single nucleotide polymorphism (SNP) in the mitochondrial gene for NADH dehydrogenase 2 (mt-Nd2) can modulate susceptibility to type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS: NOD/ShiLtJ mice conplastic for the alloxan resistant (ALR)/Lt-derived mt-Nd2(a...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012193/ https://www.ncbi.nlm.nih.gov/pubmed/20980458 http://dx.doi.org/10.2337/db10-1241 |
Sumario: | OBJECTIVE: To investigate whether a single nucleotide polymorphism (SNP) in the mitochondrial gene for NADH dehydrogenase 2 (mt-Nd2) can modulate susceptibility to type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS: NOD/ShiLtJ mice conplastic for the alloxan resistant (ALR)/Lt-derived mt-Nd2(a) allele (NOD.mt(ALR)) were created and compared with standard NOD (carrying the mt-Nd2(c) allele) for susceptibility to spontaneous autoimmune diabetes, or to diabetes elicited by reciprocal adoptive splenic leukocyte transfers, as well as by adoptive transfer of diabetogenic T-cell clones. β-Cell lines derived from either the NOD (NIT-1) or the NOD.mt(ALR) (NIT-4) were also created to compare their susceptibility to cytolysis by diabetogenic CD8(+) T-cells in vitro. RESULTS: NOD mice differing at this single SNP developed spontaneous or adoptively transferred diabetes at comparable rates and percentages. However, conplastic mice with the mt-Nd2(a) allele exhibited resistance to transfer of diabetes by the CD4(+) T-cell clone BDC 2.5 as well as the CD8(+) AI4 T-cell clones from T-cell receptor transgenic animals. NIT-4 cells with mt-Nd2(a) were also more resistant to AI4-mediated destruction in vitro than NIT-1 cells. CONCLUSIONS: Conplastic introduction into NOD mice of a variant mt-Nd2 allele alone was not sufficient to prevent spontaneous autoimmune diabetes. Subtle nonhematopoietic type 1 diabetes resistance was observed during adoptive transfer experiments with T-cell clones. This study confirms that genetic polymorphisms in mitochondria can modulate β-cell sensitivity to autoimmune T-cell effectors. |
---|