Cargando…

The utility of next-generation sequencing in the evaluation of the posterior polymorphous corneal dystrophy 1 locus

PURPOSE: To identify the genetic basis of posterior polymorphous corneal dystrophy 1 (PPCD1) using next-generation sequencing (NGS) of the common PPCD1 support interval, in which Sanger sequencing failed to identify a pathogenic mutation. METHODS: Enrichment of the portion of chromosome 20 containin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Isabella N., Yellore, Vivek S., Rayner, Sylvia A., D’Silva, Nerissa C., Nguyen, Catherine K., Aldave, Anthony J.
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012649/
https://www.ncbi.nlm.nih.gov/pubmed/21203404
Descripción
Sumario:PURPOSE: To identify the genetic basis of posterior polymorphous corneal dystrophy 1 (PPCD1) using next-generation sequencing (NGS) of the common PPCD1 support interval, in which Sanger sequencing failed to identify a pathogenic mutation. METHODS: Enrichment of the portion of chromosome 20 containing the common PPCD1 interval was performed on DNA extracted from an affected and an unaffected member of a family previously linked to the PPCD1 locus. NGS using the Roche 454 Titanium platform was performed, followed by computational analysis using NextGENe Software. RESULTS: NGS of the selectively enriched chromosomal 20 region between markers D20S48 and D20S190 produced over 400,000 DNA sequence reads with an average of 350 bases for each of the two DNA samples. Alignment of the DNA sequence reads with the reference sequence from the National Center of Biotechnology Information (NCBI) resulted in over 119 million matched bases per sample. Approximately 68,000 DNA sequence variants were identified in the common PPCD1 support interval in the affected individual, which was approximately twice the number of sequence variants identified in the unaffected individual. In both individuals, approximately 0.5% of the identified variants mapped to the 13 known and 16 predicted genes in the PPCD1 support interval, including 16 of the 17 (94%) variants previously identified by Sanger sequencing in the 13 known genes. In both individuals, the variant not identified by NGS was located in a region of inadequate coverage. CONCLUSIONS: NGS identified all of the exonic sequence variants that were previously identified by Sanger sequencing in known genes in adequately covered regions of the common PPCD1 interval, although the pathogenic variant is yet to be discovered. Given adequate coverage of a selectively enriched chromosomal region of interest, NGS represents a useful technique to screen for sequence variants in candidate gene loci that has multiple advantages over previously employed techniques for mutation discovery.