Cargando…

Global Patterns and Predictions of Seafloor Biomass Using Random Forests

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Chih-Lin, Rowe, Gilbert T., Escobar-Briones, Elva, Boetius, Antje, Soltwedel, Thomas, Caley, M. Julian, Soliman, Yousria, Huettmann, Falk, Qu, Fangyuan, Yu, Zishan, Pitcher, C. Roland, Haedrich, Richard L., Wicksten, Mary K., Rex, Michael A., Baguley, Jeffrey G., Sharma, Jyotsna, Danovaro, Roberto, MacDonald, Ian R., Nunnally, Clifton C., Deming, Jody W., Montagna, Paul, Lévesque, Mélanie, Weslawski, Jan Marcin, Wlodarska-Kowalczuk, Maria, Ingole, Baban S., Bett, Brian J., Billett, David S. M., Yool, Andrew, Bluhm, Bodil A., Iken, Katrin, Narayanaswamy, Bhavani E.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012679/
https://www.ncbi.nlm.nih.gov/pubmed/21209928
http://dx.doi.org/10.1371/journal.pone.0015323
_version_ 1782195154586697728
author Wei, Chih-Lin
Rowe, Gilbert T.
Escobar-Briones, Elva
Boetius, Antje
Soltwedel, Thomas
Caley, M. Julian
Soliman, Yousria
Huettmann, Falk
Qu, Fangyuan
Yu, Zishan
Pitcher, C. Roland
Haedrich, Richard L.
Wicksten, Mary K.
Rex, Michael A.
Baguley, Jeffrey G.
Sharma, Jyotsna
Danovaro, Roberto
MacDonald, Ian R.
Nunnally, Clifton C.
Deming, Jody W.
Montagna, Paul
Lévesque, Mélanie
Weslawski, Jan Marcin
Wlodarska-Kowalczuk, Maria
Ingole, Baban S.
Bett, Brian J.
Billett, David S. M.
Yool, Andrew
Bluhm, Bodil A.
Iken, Katrin
Narayanaswamy, Bhavani E.
author_facet Wei, Chih-Lin
Rowe, Gilbert T.
Escobar-Briones, Elva
Boetius, Antje
Soltwedel, Thomas
Caley, M. Julian
Soliman, Yousria
Huettmann, Falk
Qu, Fangyuan
Yu, Zishan
Pitcher, C. Roland
Haedrich, Richard L.
Wicksten, Mary K.
Rex, Michael A.
Baguley, Jeffrey G.
Sharma, Jyotsna
Danovaro, Roberto
MacDonald, Ian R.
Nunnally, Clifton C.
Deming, Jody W.
Montagna, Paul
Lévesque, Mélanie
Weslawski, Jan Marcin
Wlodarska-Kowalczuk, Maria
Ingole, Baban S.
Bett, Brian J.
Billett, David S. M.
Yool, Andrew
Bluhm, Bodil A.
Iken, Katrin
Narayanaswamy, Bhavani E.
author_sort Wei, Chih-Lin
collection PubMed
description A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.
format Text
id pubmed-3012679
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-30126792011-01-05 Global Patterns and Predictions of Seafloor Biomass Using Random Forests Wei, Chih-Lin Rowe, Gilbert T. Escobar-Briones, Elva Boetius, Antje Soltwedel, Thomas Caley, M. Julian Soliman, Yousria Huettmann, Falk Qu, Fangyuan Yu, Zishan Pitcher, C. Roland Haedrich, Richard L. Wicksten, Mary K. Rex, Michael A. Baguley, Jeffrey G. Sharma, Jyotsna Danovaro, Roberto MacDonald, Ian R. Nunnally, Clifton C. Deming, Jody W. Montagna, Paul Lévesque, Mélanie Weslawski, Jan Marcin Wlodarska-Kowalczuk, Maria Ingole, Baban S. Bett, Brian J. Billett, David S. M. Yool, Andrew Bluhm, Bodil A. Iken, Katrin Narayanaswamy, Bhavani E. PLoS One Research Article A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management. Public Library of Science 2010-12-30 /pmc/articles/PMC3012679/ /pubmed/21209928 http://dx.doi.org/10.1371/journal.pone.0015323 Text en Wei et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Wei, Chih-Lin
Rowe, Gilbert T.
Escobar-Briones, Elva
Boetius, Antje
Soltwedel, Thomas
Caley, M. Julian
Soliman, Yousria
Huettmann, Falk
Qu, Fangyuan
Yu, Zishan
Pitcher, C. Roland
Haedrich, Richard L.
Wicksten, Mary K.
Rex, Michael A.
Baguley, Jeffrey G.
Sharma, Jyotsna
Danovaro, Roberto
MacDonald, Ian R.
Nunnally, Clifton C.
Deming, Jody W.
Montagna, Paul
Lévesque, Mélanie
Weslawski, Jan Marcin
Wlodarska-Kowalczuk, Maria
Ingole, Baban S.
Bett, Brian J.
Billett, David S. M.
Yool, Andrew
Bluhm, Bodil A.
Iken, Katrin
Narayanaswamy, Bhavani E.
Global Patterns and Predictions of Seafloor Biomass Using Random Forests
title Global Patterns and Predictions of Seafloor Biomass Using Random Forests
title_full Global Patterns and Predictions of Seafloor Biomass Using Random Forests
title_fullStr Global Patterns and Predictions of Seafloor Biomass Using Random Forests
title_full_unstemmed Global Patterns and Predictions of Seafloor Biomass Using Random Forests
title_short Global Patterns and Predictions of Seafloor Biomass Using Random Forests
title_sort global patterns and predictions of seafloor biomass using random forests
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012679/
https://www.ncbi.nlm.nih.gov/pubmed/21209928
http://dx.doi.org/10.1371/journal.pone.0015323
work_keys_str_mv AT weichihlin globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT rowegilbertt globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT escobarbrioneselva globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT boetiusantje globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT soltwedelthomas globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT caleymjulian globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT solimanyousria globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT huettmannfalk globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT qufangyuan globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT yuzishan globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT pitchercroland globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT haedrichrichardl globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT wickstenmaryk globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT rexmichaela globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT baguleyjeffreyg globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT sharmajyotsna globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT danovaroroberto globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT macdonaldianr globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT nunnallycliftonc globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT demingjodyw globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT montagnapaul globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT levesquemelanie globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT weslawskijanmarcin globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT wlodarskakowalczukmaria globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT ingolebabans globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT bettbrianj globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT billettdavidsm globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT yoolandrew globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT bluhmbodila globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT ikenkatrin globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT narayanaswamybhavanie globalpatternsandpredictionsofseafloorbiomassusingrandomforests