Cargando…

Molecular Dynamics of Sialic Acid Analogues and their Interaction with Influenza Hemagglutinin

Synthetic sialic acid analogues with multiple modifications at different positions(C-1/C-2/C-4/C-8/C-9) are investigated by molecular mechanics and molecular dynamics to determine their conformational preferences and structural stability to interact with their natural receptors. Sialic acids with mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Blessia, T. Femlin, Rapheal, V. S., Sharmila, D. J. S.
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013563/
https://www.ncbi.nlm.nih.gov/pubmed/21218055
http://dx.doi.org/10.4103/0250-474X.73919
Descripción
Sumario:Synthetic sialic acid analogues with multiple modifications at different positions(C-1/C-2/C-4/C-8/C-9) are investigated by molecular mechanics and molecular dynamics to determine their conformational preferences and structural stability to interact with their natural receptors. Sialic acids with multiple modifications are soaked in a periodic box of water as solvent. Molecular mechanics and a 2 nanosecond molecular dynamics are done using amber force fields with 30 picosecond equilibrium. Direct and water mediated hydrogen bonds existing in the sialic acid analogues, aiding for their structural stabilization are identified in this study. The accessible conformations of side chain linkages of sialic acid analogues holding multiple substituents are determined from molecular dynamics trajectory at every 1ps interval. Transitions between different minimum energy regions in conformational maps are also noticed in C-1, C-2, C-4, C-8 and C-9 substituents. Docking studies were done to find the binding mode of the sialic acid analogues with Influenza hemagglutinin. This finding provides stereo chemical explanation and conformational preference of sialic acid analogues which may be crucial for the design of sialic acid analogues as inhibitors for different sialic acid specific pathogenic proteins such as influenza toxins and neuraminidases.