Cargando…
Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1
BACKGROUND: Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in Lactobacillus plantarum WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells. RESULTS: Metabolite format...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014895/ https://www.ncbi.nlm.nih.gov/pubmed/21167023 http://dx.doi.org/10.1186/1475-2859-9-100 |
_version_ | 1782195416257789952 |
---|---|
author | Wegkamp, Arno Mars, Astrid E Faijes, Magda Molenaar, Douwe de Vos, Ric CH Klaus, Sebastian MJ Hanson, Andrew D de Vos, Willem M Smid, Eddy J |
author_facet | Wegkamp, Arno Mars, Astrid E Faijes, Magda Molenaar, Douwe de Vos, Ric CH Klaus, Sebastian MJ Hanson, Andrew D de Vos, Willem M Smid, Eddy J |
author_sort | Wegkamp, Arno |
collection | PubMed |
description | BACKGROUND: Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in Lactobacillus plantarum WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells. RESULTS: Metabolite formation and gene expression were determined in a folate-overproducing- and wild-type strain. Differential metabolomics analysis of intracellular metabolite pools indicated that the pool sizes of 18 metabolites differed significantly between these strains. The gene expression profile was determined for both strains in pH-regulated chemostat culture and batch culture. Apart from the expected overexpression of the 6 genes of the folate gene cluster, no other genes were found to be differentially expressed both in continuous and batch cultures. The discrepancy between the low transcriptome and metabolome response and the 25% growth rate reduction of the folate overproducing strain was further investigated. Folate production per se could be ruled out as a contributing factor, since in the absence of folate production the growth rate of the overproducer was also reduced by 25%. The higher metabolic costs for DNA and RNA biosynthesis in the folate overproducing strain were also ruled out. However, it was demonstrated that folate-specific mRNAs and proteins constitute 8% and 4% of the total mRNA and protein pool, respectively. CONCLUSION: Folate overproduction leads to very little change in metabolite levels or overall transcript profile, while at the same time the growth rate is reduced drastically. This shows that Lactobacillus plantarum WCFS1 is unable to respond to this growth rate reduction, most likely because the growth-related transcripts and proteins are diluted by the enormous amount of gratuitous folate-related transcripts and proteins. |
format | Text |
id | pubmed-3014895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30148952011-01-05 Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 Wegkamp, Arno Mars, Astrid E Faijes, Magda Molenaar, Douwe de Vos, Ric CH Klaus, Sebastian MJ Hanson, Andrew D de Vos, Willem M Smid, Eddy J Microb Cell Fact Research BACKGROUND: Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in Lactobacillus plantarum WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells. RESULTS: Metabolite formation and gene expression were determined in a folate-overproducing- and wild-type strain. Differential metabolomics analysis of intracellular metabolite pools indicated that the pool sizes of 18 metabolites differed significantly between these strains. The gene expression profile was determined for both strains in pH-regulated chemostat culture and batch culture. Apart from the expected overexpression of the 6 genes of the folate gene cluster, no other genes were found to be differentially expressed both in continuous and batch cultures. The discrepancy between the low transcriptome and metabolome response and the 25% growth rate reduction of the folate overproducing strain was further investigated. Folate production per se could be ruled out as a contributing factor, since in the absence of folate production the growth rate of the overproducer was also reduced by 25%. The higher metabolic costs for DNA and RNA biosynthesis in the folate overproducing strain were also ruled out. However, it was demonstrated that folate-specific mRNAs and proteins constitute 8% and 4% of the total mRNA and protein pool, respectively. CONCLUSION: Folate overproduction leads to very little change in metabolite levels or overall transcript profile, while at the same time the growth rate is reduced drastically. This shows that Lactobacillus plantarum WCFS1 is unable to respond to this growth rate reduction, most likely because the growth-related transcripts and proteins are diluted by the enormous amount of gratuitous folate-related transcripts and proteins. BioMed Central 2010-12-17 /pmc/articles/PMC3014895/ /pubmed/21167023 http://dx.doi.org/10.1186/1475-2859-9-100 Text en Copyright ©2010 Wegkamp et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wegkamp, Arno Mars, Astrid E Faijes, Magda Molenaar, Douwe de Vos, Ric CH Klaus, Sebastian MJ Hanson, Andrew D de Vos, Willem M Smid, Eddy J Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 |
title | Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 |
title_full | Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 |
title_fullStr | Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 |
title_full_unstemmed | Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 |
title_short | Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 |
title_sort | physiological responses to folate overproduction in lactobacillus plantarum wcfs1 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014895/ https://www.ncbi.nlm.nih.gov/pubmed/21167023 http://dx.doi.org/10.1186/1475-2859-9-100 |
work_keys_str_mv | AT wegkamparno physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT marsastride physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT faijesmagda physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT molenaardouwe physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT devosricch physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT klaussebastianmj physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT hansonandrewd physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT devoswillemm physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 AT smideddyj physiologicalresponsestofolateoverproductioninlactobacillusplantarumwcfs1 |