Cargando…
A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences
BACKGROUND: The reptiles, characterized by both diversity and unique evolutionary adaptations, provide a comprehensive system for comparative studies of metabolism, physiology, and development. However, molecular resources for ectothermic reptiles are severely limited, hampering our ability to study...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014983/ https://www.ncbi.nlm.nih.gov/pubmed/21138572 http://dx.doi.org/10.1186/1471-2164-11-694 |
_version_ | 1782195440505061376 |
---|---|
author | Schwartz, Tonia S Tae, Hongseok Yang, Youngik Mockaitis, Keithanne Van Hemert, John L Proulx, Stephen R Choi, Jeong-Hyeon Bronikowski, Anne M |
author_facet | Schwartz, Tonia S Tae, Hongseok Yang, Youngik Mockaitis, Keithanne Van Hemert, John L Proulx, Stephen R Choi, Jeong-Hyeon Bronikowski, Anne M |
author_sort | Schwartz, Tonia S |
collection | PubMed |
description | BACKGROUND: The reptiles, characterized by both diversity and unique evolutionary adaptations, provide a comprehensive system for comparative studies of metabolism, physiology, and development. However, molecular resources for ectothermic reptiles are severely limited, hampering our ability to study the genetic basis for many evolutionarily important traits such as metabolic plasticity, extreme longevity, limblessness, venom, and freeze tolerance. Here we use massively parallel sequencing (454 GS-FLX Titanium) to generate a transcriptome of the western terrestrial garter snake (Thamnophis elegans) with two goals in mind. First, we develop a molecular resource for an ectothermic reptile; and second, we use these sex-specific transcriptomes to identify differences in the presence of expressed transcripts and potential genes of evolutionary interest. RESULTS: Using sex-specific pools of RNA (one pool for females, one pool for males) representing 7 tissue types and 35 diverse individuals, we produced 1.24 million sequence reads, which averaged 366 bp in length after cleaning. Assembly of the cleaned reads from both sexes with NEWBLER and MIRA resulted in 96,379 contigs containing 87% of the cleaned reads. Over 34% of these contigs and 13% of the singletons were annotated based on homology to previously identified proteins. From these homology assignments, additional clustering, and ORF predictions, we estimate that this transcriptome contains ~13,000 unique genes that were previously identified in other species and over 66,000 transcripts from unidentified protein-coding genes. Furthermore, we use a graph-clustering method to identify contigs linked by NEWBLER-split reads that represent divergent alleles, gene duplications, and alternatively spliced transcripts. Beyond gene identification, we identified 95,295 SNPs and 31,651 INDELs. From these sex-specific transcriptomes, we identified 190 genes that were only present in the mRNA sequenced from one of the sexes (84 female-specific, 106 male-specific), and many highly variable genes of evolutionary interest. CONCLUSIONS: This is the first large-scale, multi-organ transcriptome for an ectothermic reptile. This resource provides the most comprehensive set of EST sequences available for an individual ectothermic reptile species, increasing the number of snake ESTs 50-fold. We have identified genes that appear to be under evolutionary selection and those that are sex-specific. This resource will assist studies on gene expression and comparative genomics, and will facilitate the study of evolutionarily important traits at the molecular level. |
format | Text |
id | pubmed-3014983 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30149832011-01-05 A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences Schwartz, Tonia S Tae, Hongseok Yang, Youngik Mockaitis, Keithanne Van Hemert, John L Proulx, Stephen R Choi, Jeong-Hyeon Bronikowski, Anne M BMC Genomics Research Article BACKGROUND: The reptiles, characterized by both diversity and unique evolutionary adaptations, provide a comprehensive system for comparative studies of metabolism, physiology, and development. However, molecular resources for ectothermic reptiles are severely limited, hampering our ability to study the genetic basis for many evolutionarily important traits such as metabolic plasticity, extreme longevity, limblessness, venom, and freeze tolerance. Here we use massively parallel sequencing (454 GS-FLX Titanium) to generate a transcriptome of the western terrestrial garter snake (Thamnophis elegans) with two goals in mind. First, we develop a molecular resource for an ectothermic reptile; and second, we use these sex-specific transcriptomes to identify differences in the presence of expressed transcripts and potential genes of evolutionary interest. RESULTS: Using sex-specific pools of RNA (one pool for females, one pool for males) representing 7 tissue types and 35 diverse individuals, we produced 1.24 million sequence reads, which averaged 366 bp in length after cleaning. Assembly of the cleaned reads from both sexes with NEWBLER and MIRA resulted in 96,379 contigs containing 87% of the cleaned reads. Over 34% of these contigs and 13% of the singletons were annotated based on homology to previously identified proteins. From these homology assignments, additional clustering, and ORF predictions, we estimate that this transcriptome contains ~13,000 unique genes that were previously identified in other species and over 66,000 transcripts from unidentified protein-coding genes. Furthermore, we use a graph-clustering method to identify contigs linked by NEWBLER-split reads that represent divergent alleles, gene duplications, and alternatively spliced transcripts. Beyond gene identification, we identified 95,295 SNPs and 31,651 INDELs. From these sex-specific transcriptomes, we identified 190 genes that were only present in the mRNA sequenced from one of the sexes (84 female-specific, 106 male-specific), and many highly variable genes of evolutionary interest. CONCLUSIONS: This is the first large-scale, multi-organ transcriptome for an ectothermic reptile. This resource provides the most comprehensive set of EST sequences available for an individual ectothermic reptile species, increasing the number of snake ESTs 50-fold. We have identified genes that appear to be under evolutionary selection and those that are sex-specific. This resource will assist studies on gene expression and comparative genomics, and will facilitate the study of evolutionarily important traits at the molecular level. BioMed Central 2010-12-07 /pmc/articles/PMC3014983/ /pubmed/21138572 http://dx.doi.org/10.1186/1471-2164-11-694 Text en Copyright ©2010 Schwartz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Schwartz, Tonia S Tae, Hongseok Yang, Youngik Mockaitis, Keithanne Van Hemert, John L Proulx, Stephen R Choi, Jeong-Hyeon Bronikowski, Anne M A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
title | A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
title_full | A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
title_fullStr | A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
title_full_unstemmed | A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
title_short | A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
title_sort | garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014983/ https://www.ncbi.nlm.nih.gov/pubmed/21138572 http://dx.doi.org/10.1186/1471-2164-11-694 |
work_keys_str_mv | AT schwartztonias agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT taehongseok agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT yangyoungik agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT mockaitiskeithanne agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT vanhemertjohnl agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT proulxstephenr agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT choijeonghyeon agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT bronikowskiannem agartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT schwartztonias gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT taehongseok gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT yangyoungik gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT mockaitiskeithanne gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT vanhemertjohnl gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT proulxstephenr gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT choijeonghyeon gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences AT bronikowskiannem gartersnaketranscriptomepyrosequencingdenovoassemblyandsexspecificdifferences |