Cargando…
Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes
We observed how the hypothyroid state affects diabetic states and modifies cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG). For this, 0.03% methimazole, an anti-thyroid drug, was administered to 7-week-old, pre-diabetic Zucker diabetic fatty (ZDF) rats by drin...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Korean Association of Anatomists
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015036/ https://www.ncbi.nlm.nih.gov/pubmed/21212858 http://dx.doi.org/10.5115/acb.2010.43.3.185 |
_version_ | 1782195443218776064 |
---|---|
author | Yi, Sun Shin Hwang, In Koo Choi, Ji Won Won, Moo-Ho Seong, Je Kyung Yoon, Yeo Sung |
author_facet | Yi, Sun Shin Hwang, In Koo Choi, Ji Won Won, Moo-Ho Seong, Je Kyung Yoon, Yeo Sung |
author_sort | Yi, Sun Shin |
collection | PubMed |
description | We observed how the hypothyroid state affects diabetic states and modifies cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG). For this, 0.03% methimazole, an anti-thyroid drug, was administered to 7-week-old, pre-diabetic Zucker diabetic fatty (ZDF) rats by drinking water for 5 weeks, and the animals were sacrificed at 12 weeks of age. At this age, corticosterone levels were significantly increased in the ZDF rats compared to those in the control (Zucker lean control, ZLC) rats. Methimazole (methi) treatment in the ZDF rats (ZDF-methi rats) significantly decreased corticosterone levels and diabetes-induced hypertrophy of adrenal glands. In the DG, Ki67 (a marker for cell proliferation)- and doublecortin (DCX, a marker for neuronal progenitors)-immunoreactive cells were much lower in the ZDF rats than those in the ZLC rats. However, in ZDF-methi rats, numbers of Ki67- and DCX-immunoreactive cells were similar to those in the ZLC rats. These suggest that methi significantly reduces diabetes-induced hypertrophy of the adrenal gland and alleviates the diabetes-induced reduction of cell proliferation and neuronal progenitors in the DG. |
format | Text |
id | pubmed-3015036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Korean Association of Anatomists |
record_format | MEDLINE/PubMed |
spelling | pubmed-30150362011-01-06 Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes Yi, Sun Shin Hwang, In Koo Choi, Ji Won Won, Moo-Ho Seong, Je Kyung Yoon, Yeo Sung Anat Cell Biol Original Article We observed how the hypothyroid state affects diabetic states and modifies cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG). For this, 0.03% methimazole, an anti-thyroid drug, was administered to 7-week-old, pre-diabetic Zucker diabetic fatty (ZDF) rats by drinking water for 5 weeks, and the animals were sacrificed at 12 weeks of age. At this age, corticosterone levels were significantly increased in the ZDF rats compared to those in the control (Zucker lean control, ZLC) rats. Methimazole (methi) treatment in the ZDF rats (ZDF-methi rats) significantly decreased corticosterone levels and diabetes-induced hypertrophy of adrenal glands. In the DG, Ki67 (a marker for cell proliferation)- and doublecortin (DCX, a marker for neuronal progenitors)-immunoreactive cells were much lower in the ZDF rats than those in the ZLC rats. However, in ZDF-methi rats, numbers of Ki67- and DCX-immunoreactive cells were similar to those in the ZLC rats. These suggest that methi significantly reduces diabetes-induced hypertrophy of the adrenal gland and alleviates the diabetes-induced reduction of cell proliferation and neuronal progenitors in the DG. Korean Association of Anatomists 2010-09 2010-09-30 /pmc/articles/PMC3015036/ /pubmed/21212858 http://dx.doi.org/10.5115/acb.2010.43.3.185 Text en Copyright © 2010. Anatomy and Cell Biology http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Yi, Sun Shin Hwang, In Koo Choi, Ji Won Won, Moo-Ho Seong, Je Kyung Yoon, Yeo Sung Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
title | Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
title_full | Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
title_fullStr | Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
title_full_unstemmed | Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
title_short | Effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
title_sort | effects of hypothyroidism on cell proliferation and neuroblasts in the hippocampal dentate gyrus in a rat model of type 2 diabetes |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015036/ https://www.ncbi.nlm.nih.gov/pubmed/21212858 http://dx.doi.org/10.5115/acb.2010.43.3.185 |
work_keys_str_mv | AT yisunshin effectsofhypothyroidismoncellproliferationandneuroblastsinthehippocampaldentategyrusinaratmodeloftype2diabetes AT hwanginkoo effectsofhypothyroidismoncellproliferationandneuroblastsinthehippocampaldentategyrusinaratmodeloftype2diabetes AT choijiwon effectsofhypothyroidismoncellproliferationandneuroblastsinthehippocampaldentategyrusinaratmodeloftype2diabetes AT wonmooho effectsofhypothyroidismoncellproliferationandneuroblastsinthehippocampaldentategyrusinaratmodeloftype2diabetes AT seongjekyung effectsofhypothyroidismoncellproliferationandneuroblastsinthehippocampaldentategyrusinaratmodeloftype2diabetes AT yoonyeosung effectsofhypothyroidismoncellproliferationandneuroblastsinthehippocampaldentategyrusinaratmodeloftype2diabetes |