Cargando…
Increased risk of phosphorus limitation at higher temperatures for Daphnia magna
Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interac...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015186/ https://www.ncbi.nlm.nih.gov/pubmed/20803219 http://dx.doi.org/10.1007/s00442-010-1756-4 |
Sumario: | Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interaction, we conducted a study on the somatic growth rate (SGR) of the cladoceran Daphnia magna, known to be susceptible to P-limitation. We determined the SGR across a broad range of dietary P content of algae (carbon (C):P ratios (125–790), and at different temperatures (10–25°C). There was a strong impact of both temperature and C:P ratio on the SGR of D. magna, and also a significant interaction between both factors was revealed. The negative effect of dietary C:P on growth rate was reduced with decreased temperature. We found no evidence of P limitation at lowest temperature, suggesting that enzyme kinetics or other measures of food quality overrides the demands for P to RNA and protein synthesis at low temperatures. These findings also indicate an increased risk of P limitation and thus reduced growth efficiency at high temperatures. |
---|