Cargando…
The effects of viral load on pseudorabies virus gene expression
BACKGROUND: Herpesvirus genes are classified into distinct kinetic groups on the basis of their expression dynamics during lytic growth of the virus in cultured cells at a high, typically 10 plaque-forming units/cell multiplicity of infection (MOI). It has been shown that both the host response and...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016322/ https://www.ncbi.nlm.nih.gov/pubmed/21134263 http://dx.doi.org/10.1186/1471-2180-10-311 |
_version_ | 1782195720729657344 |
---|---|
author | Tóth, Judit S Tombácz, Dóra Takács, Irma F Boldogkői, Zsolt |
author_facet | Tóth, Judit S Tombácz, Dóra Takács, Irma F Boldogkői, Zsolt |
author_sort | Tóth, Judit S |
collection | PubMed |
description | BACKGROUND: Herpesvirus genes are classified into distinct kinetic groups on the basis of their expression dynamics during lytic growth of the virus in cultured cells at a high, typically 10 plaque-forming units/cell multiplicity of infection (MOI). It has been shown that both the host response and the success of a pathogen are dependent on the quantity of particles infecting an organism. This work is a continuation of an earlier study [1], in which we characterized the overall expression of PRV genes following low-MOI infection. In the present study, we have addressed the question of whether viral gene expressions are dependent on the multiplicity of infection by comparing gene expressions under low and high-MOI conditions. RESULTS: In the present study, using a real-time RT-PCR assay, we address the question of whether the expression properties of the pseudorabies virus (PRV) genes are dependent on the number of virion particles infecting a single cell in a culture. Our analysis revealed a significant dependence of the gene expression on the MOI in most of these genes. Specifically, we found that most of the examined viral genes were expressed at a lower level at a low MOI (0.1) than at a high MOI (10) experiment in the early stage of infection; however, this trend reversed by six hour post-infection in more than half of the genes. Furthermore, in the high-MOI infection, several PRV genes substantially declined within the 4 to 6-h infection period, which was not the case in the low-MOI infection. In the low-MOI infection, the level of antisense transcript (AST), transcribed from the antiparallel DNA strand of the immediate-early 180 (ie180) gene, was comparable to that of ie180 mRNA, while in the high-MOI experiment (despite the 10 times higher copy number of the viral genome in the infected cells) the amount of AST dropped by more than two log values at the early phase of infection. Furthermore, our analysis suggests that adjacent PRV genes are under a common regulation. This is the first report on the effect of the multiplicity of infection on genome-wide gene expression of large DNA viruses, including herpesviruses. CONCLUSION: Our results show a strong dependence of the global expression of PRV genes on the MOI. Furthermore, our data indicate a strong interrelation between the expressions of ie180 mRNA and AST, which determines the expression properties of the herpesvirus genome and possibly the replication strategy (lytic or latent infection) of the virus in certain cell types. |
format | Text |
id | pubmed-3016322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30163222011-01-10 The effects of viral load on pseudorabies virus gene expression Tóth, Judit S Tombácz, Dóra Takács, Irma F Boldogkői, Zsolt BMC Microbiol Research Article BACKGROUND: Herpesvirus genes are classified into distinct kinetic groups on the basis of their expression dynamics during lytic growth of the virus in cultured cells at a high, typically 10 plaque-forming units/cell multiplicity of infection (MOI). It has been shown that both the host response and the success of a pathogen are dependent on the quantity of particles infecting an organism. This work is a continuation of an earlier study [1], in which we characterized the overall expression of PRV genes following low-MOI infection. In the present study, we have addressed the question of whether viral gene expressions are dependent on the multiplicity of infection by comparing gene expressions under low and high-MOI conditions. RESULTS: In the present study, using a real-time RT-PCR assay, we address the question of whether the expression properties of the pseudorabies virus (PRV) genes are dependent on the number of virion particles infecting a single cell in a culture. Our analysis revealed a significant dependence of the gene expression on the MOI in most of these genes. Specifically, we found that most of the examined viral genes were expressed at a lower level at a low MOI (0.1) than at a high MOI (10) experiment in the early stage of infection; however, this trend reversed by six hour post-infection in more than half of the genes. Furthermore, in the high-MOI infection, several PRV genes substantially declined within the 4 to 6-h infection period, which was not the case in the low-MOI infection. In the low-MOI infection, the level of antisense transcript (AST), transcribed from the antiparallel DNA strand of the immediate-early 180 (ie180) gene, was comparable to that of ie180 mRNA, while in the high-MOI experiment (despite the 10 times higher copy number of the viral genome in the infected cells) the amount of AST dropped by more than two log values at the early phase of infection. Furthermore, our analysis suggests that adjacent PRV genes are under a common regulation. This is the first report on the effect of the multiplicity of infection on genome-wide gene expression of large DNA viruses, including herpesviruses. CONCLUSION: Our results show a strong dependence of the global expression of PRV genes on the MOI. Furthermore, our data indicate a strong interrelation between the expressions of ie180 mRNA and AST, which determines the expression properties of the herpesvirus genome and possibly the replication strategy (lytic or latent infection) of the virus in certain cell types. BioMed Central 2010-12-06 /pmc/articles/PMC3016322/ /pubmed/21134263 http://dx.doi.org/10.1186/1471-2180-10-311 Text en Copyright ©2010 Tóth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tóth, Judit S Tombácz, Dóra Takács, Irma F Boldogkői, Zsolt The effects of viral load on pseudorabies virus gene expression |
title | The effects of viral load on pseudorabies virus gene expression |
title_full | The effects of viral load on pseudorabies virus gene expression |
title_fullStr | The effects of viral load on pseudorabies virus gene expression |
title_full_unstemmed | The effects of viral load on pseudorabies virus gene expression |
title_short | The effects of viral load on pseudorabies virus gene expression |
title_sort | effects of viral load on pseudorabies virus gene expression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016322/ https://www.ncbi.nlm.nih.gov/pubmed/21134263 http://dx.doi.org/10.1186/1471-2180-10-311 |
work_keys_str_mv | AT tothjudits theeffectsofviralloadonpseudorabiesvirusgeneexpression AT tombaczdora theeffectsofviralloadonpseudorabiesvirusgeneexpression AT takacsirmaf theeffectsofviralloadonpseudorabiesvirusgeneexpression AT boldogkoizsolt theeffectsofviralloadonpseudorabiesvirusgeneexpression AT tothjudits effectsofviralloadonpseudorabiesvirusgeneexpression AT tombaczdora effectsofviralloadonpseudorabiesvirusgeneexpression AT takacsirmaf effectsofviralloadonpseudorabiesvirusgeneexpression AT boldogkoizsolt effectsofviralloadonpseudorabiesvirusgeneexpression |