Cargando…
Extending pathways and processes using molecular interaction networks to analyse cancer genome data
BACKGROUND: Cellular processes and pathways, whose deregulation may contribute to the development of cancers, are often represented as cascades of proteins transmitting a signal from the cell surface to the nucleus. However, recent functional genomic experiments have identified thousands of interact...
Autores principales: | Glaab, Enrico, Baudot, Anaïs, Krasnogor, Natalio, Valencia, Alfonso |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017081/ https://www.ncbi.nlm.nih.gov/pubmed/21144022 http://dx.doi.org/10.1186/1471-2105-11-597 |
Ejemplares similares
-
TopoGSA: network topological gene set analysis
por: Glaab, Enrico, et al.
Publicado: (2010) -
EnrichNet: network-based gene set enrichment analysis
por: Glaab, Enrico, et al.
Publicado: (2012) -
ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization
por: Glaab, Enrico, et al.
Publicado: (2009) -
Functional networks inference from rule-based machine learning models
por: Lazzarini, Nicola, et al.
Publicado: (2016) -
Using Rule-Based Machine Learning for Candidate Disease Gene Prioritization and Sample Classification of Cancer Gene Expression Data
por: Glaab, Enrico, et al.
Publicado: (2012)