Cargando…

Simple sequence repeat variation in the Daphnia pulex genome

BACKGROUND: Simple sequence repeats (SSRs) are highly variable features of all genomes. Their rapid evolution makes them useful for tracing the evolutionary history of populations and investigating patterns of selection and mutation across gnomes. The recently sequenced Daphnia pulex genome provides...

Descripción completa

Detalles Bibliográficos
Autores principales: Sung, Way, Tucker, Abraham, Bergeron, R Daniel, Lynch, Michael, Thomas, W Kelley
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017760/
https://www.ncbi.nlm.nih.gov/pubmed/21129182
http://dx.doi.org/10.1186/1471-2164-11-691
Descripción
Sumario:BACKGROUND: Simple sequence repeats (SSRs) are highly variable features of all genomes. Their rapid evolution makes them useful for tracing the evolutionary history of populations and investigating patterns of selection and mutation across gnomes. The recently sequenced Daphnia pulex genome provides us with a valuable data set to study the mode and tempo of SSR evolution, without the inherent biases that accompany marker selection. RESULTS: Here we catalogue SSR loci in the Daphnia pulex genome with repeated motif sizes of 1-100 nucleotides with a minimum of 3 perfect repeats. We then used whole genome shotgun reads to determine the average heterozygosity of each SSR type and the relationship that it has to repeat number, motif size, motif sequence, and distribution of SSR loci. We find that SSR heterozygosity is motif specific, and positively correlated with repeat number as well as motif size. For non-repeat unit polymorphisms, we identify a motif-dependent end-nucleotide polymorphism bias that may contribute to the patterns of abundance for specific homopolymers, dimers, and trimers. Our observations confirm the high frequency of multiple unit variation (multistep) at large microsatellite loci, and further show that the occurrence of multiple unit variation is dependent on both repeat number and motif size. Using the Daphnia pulex genetic map, we show a positive correlation between dimer and trimer frequency and recombination. CONCLUSIONS: This genome-wide analysis of SSR variation in Daphnia pulex indicates that several aspects of SSR variation are motif dependent and suggests that a combination of unit length variation and end repeat biased base substitution contribute to the unique spectrum of SSR repeat loci.