Cargando…

A molecular recombination map of Antirrhinum majus

BACKGROUND: Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinu...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwarz-Sommer, Zsuzsanna, Gübitz, Thomas, Weiss, Julia, Gómez-di-Marco, Perla, Delgado-Benarroch, Luciana, Hudson, Andrew, Egea-Cortines, Marcos
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017841/
https://www.ncbi.nlm.nih.gov/pubmed/21159166
http://dx.doi.org/10.1186/1471-2229-10-275
_version_ 1782195964203761664
author Schwarz-Sommer, Zsuzsanna
Gübitz, Thomas
Weiss, Julia
Gómez-di-Marco, Perla
Delgado-Benarroch, Luciana
Hudson, Andrew
Egea-Cortines, Marcos
author_facet Schwarz-Sommer, Zsuzsanna
Gübitz, Thomas
Weiss, Julia
Gómez-di-Marco, Perla
Delgado-Benarroch, Luciana
Hudson, Andrew
Egea-Cortines, Marcos
author_sort Schwarz-Sommer, Zsuzsanna
collection PubMed
description BACKGROUND: Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus. RESULTS: We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size. CONCLUSIONS: The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.
format Text
id pubmed-3017841
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30178412011-01-10 A molecular recombination map of Antirrhinum majus Schwarz-Sommer, Zsuzsanna Gübitz, Thomas Weiss, Julia Gómez-di-Marco, Perla Delgado-Benarroch, Luciana Hudson, Andrew Egea-Cortines, Marcos BMC Plant Biol Research Article BACKGROUND: Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus. RESULTS: We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size. CONCLUSIONS: The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus. BioMed Central 2010-12-15 /pmc/articles/PMC3017841/ /pubmed/21159166 http://dx.doi.org/10.1186/1471-2229-10-275 Text en Copyright ©2010 Schwarz-Sommer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Schwarz-Sommer, Zsuzsanna
Gübitz, Thomas
Weiss, Julia
Gómez-di-Marco, Perla
Delgado-Benarroch, Luciana
Hudson, Andrew
Egea-Cortines, Marcos
A molecular recombination map of Antirrhinum majus
title A molecular recombination map of Antirrhinum majus
title_full A molecular recombination map of Antirrhinum majus
title_fullStr A molecular recombination map of Antirrhinum majus
title_full_unstemmed A molecular recombination map of Antirrhinum majus
title_short A molecular recombination map of Antirrhinum majus
title_sort molecular recombination map of antirrhinum majus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017841/
https://www.ncbi.nlm.nih.gov/pubmed/21159166
http://dx.doi.org/10.1186/1471-2229-10-275
work_keys_str_mv AT schwarzsommerzsuzsanna amolecularrecombinationmapofantirrhinummajus
AT gubitzthomas amolecularrecombinationmapofantirrhinummajus
AT weissjulia amolecularrecombinationmapofantirrhinummajus
AT gomezdimarcoperla amolecularrecombinationmapofantirrhinummajus
AT delgadobenarrochluciana amolecularrecombinationmapofantirrhinummajus
AT hudsonandrew amolecularrecombinationmapofantirrhinummajus
AT egeacortinesmarcos amolecularrecombinationmapofantirrhinummajus
AT schwarzsommerzsuzsanna molecularrecombinationmapofantirrhinummajus
AT gubitzthomas molecularrecombinationmapofantirrhinummajus
AT weissjulia molecularrecombinationmapofantirrhinummajus
AT gomezdimarcoperla molecularrecombinationmapofantirrhinummajus
AT delgadobenarrochluciana molecularrecombinationmapofantirrhinummajus
AT hudsonandrew molecularrecombinationmapofantirrhinummajus
AT egeacortinesmarcos molecularrecombinationmapofantirrhinummajus