Cargando…
Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry
Fourier domain low coherence interferometry (fLCI) is an emerging optical technique used to quantitatively assess cell nuclear morphology in tissue as a means of detecting early cancer development. In this work, we use the azoxymethane rat carcinogenesis model, a well characterized and established m...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017982/ https://www.ncbi.nlm.nih.gov/pubmed/21258505 http://dx.doi.org/10.1364/BOE.1.000736 |
Sumario: | Fourier domain low coherence interferometry (fLCI) is an emerging optical technique used to quantitatively assess cell nuclear morphology in tissue as a means of detecting early cancer development. In this work, we use the azoxymethane rat carcinogenesis model, a well characterized and established model for colon cancer research, to demonstrate the ability of fLCI to distinguish between normal and preneoplastic ex-vivo colon tissue. The results show highly statistically significant differences between the measured cell nuclear diameters of normal and azoxymethane-treated tissues, thus providing strong evidence that fLCI may be a powerful tool for non-invasive, quantitative detection of early changes associated with colorectal cancer development. |
---|