Cargando…
Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors
Diffuse optical tomography (DOT) is a non-invasive brain imaging technique that uses low-levels of near-infrared light to measure optical absorption changes due to regional blood flow and blood oxygen saturation in the brain. By arranging light sources and detectors in a grid over the surface of the...
Autores principales: | Abdelnour, Farras, Genovese, Christopher, Huppert, Theodore |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018091/ https://www.ncbi.nlm.nih.gov/pubmed/21258532 http://dx.doi.org/10.1364/BOE.1.001084 |
Ejemplares similares
-
A random-effects model for group-level analysis of diffuse optical brain imaging
por: Abdelnour, Farras, et al.
Publicado: (2010) -
Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography
por: Zhan, Yuxuan, et al.
Publicado: (2012) -
Hyperspectral image reconstruction for diffuse optical tomography
por: Larusson, Fridrik, et al.
Publicado: (2011) -
Improvement of image quality of time-domain diffuse optical tomography with l(p) sparsity regularization
por: Okawa, Shinpei, et al.
Publicado: (2011) -
Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information
por: Correia, Teresa, et al.
Publicado: (2011)