Cargando…
Unsupervised clustering of wildlife necropsy data for syndromic surveillance
BACKGROUND: The importance of wildlife disease surveillance is increasing, because wild animals are playing a growing role as sources of emerging infectious disease events in humans. Syndromic surveillance methods have been developed as a complement to traditional health data analyses, to allow the...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018415/ https://www.ncbi.nlm.nih.gov/pubmed/21162732 http://dx.doi.org/10.1186/1746-6148-6-56 |
_version_ | 1782196061020880896 |
---|---|
author | Warns-Petit, Eva Morignat, Eric Artois, Marc Calavas, Didier |
author_facet | Warns-Petit, Eva Morignat, Eric Artois, Marc Calavas, Didier |
author_sort | Warns-Petit, Eva |
collection | PubMed |
description | BACKGROUND: The importance of wildlife disease surveillance is increasing, because wild animals are playing a growing role as sources of emerging infectious disease events in humans. Syndromic surveillance methods have been developed as a complement to traditional health data analyses, to allow the early detection of unusual health events. Early detection of these events in wildlife could help to protect the health of domestic animals or humans. This paper aims to define syndromes that could be used for the syndromic surveillance of wildlife health data. Wildlife disease monitoring in France, from 1986 onward, has allowed numerous diagnostic data to be collected from wild animals found dead. The authors wanted to identify distinct pathological profiles from these historical data by a global analysis of the registered necropsy descriptions, and discuss how these profiles can be used to define syndromes. In view of the multiplicity and heterogeneity of the available information, the authors suggest constructing syndromic classes by a multivariate statistical analysis and classification procedure grouping cases that share similar pathological characteristics. RESULTS: A three-step procedure was applied: first, a multiple correspondence analysis was performed on necropsy data to reduce them to their principal components. Then hierarchical ascendant clustering was used to partition the data. Finally the k-means algorithm was applied to strengthen the partitioning. Nine clusters were identified: three were species- and disease-specific, three were suggestive of specific pathological conditions but not species-specific, two covered a broader pathological condition and one was miscellaneous. The clusters reflected the most distinct and most frequent disease entities on which the surveillance network focused. They could be used to define distinct syndromes characterised by specific post-mortem findings. CONCLUSIONS: The chosen statistical clustering method was found to be a useful tool to retrospectively group cases from our database into distinct and meaningful pathological entities. Syndrome definition from post-mortem findings is potentially useful for early outbreak detection because it uses the earliest available information on disease in wildlife. Furthermore, the proposed typology allows each case to be attributed to a syndrome, thus enabling the exhaustive surveillance of health events through time series analyses. |
format | Text |
id | pubmed-3018415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30184152011-01-11 Unsupervised clustering of wildlife necropsy data for syndromic surveillance Warns-Petit, Eva Morignat, Eric Artois, Marc Calavas, Didier BMC Vet Res Research Article BACKGROUND: The importance of wildlife disease surveillance is increasing, because wild animals are playing a growing role as sources of emerging infectious disease events in humans. Syndromic surveillance methods have been developed as a complement to traditional health data analyses, to allow the early detection of unusual health events. Early detection of these events in wildlife could help to protect the health of domestic animals or humans. This paper aims to define syndromes that could be used for the syndromic surveillance of wildlife health data. Wildlife disease monitoring in France, from 1986 onward, has allowed numerous diagnostic data to be collected from wild animals found dead. The authors wanted to identify distinct pathological profiles from these historical data by a global analysis of the registered necropsy descriptions, and discuss how these profiles can be used to define syndromes. In view of the multiplicity and heterogeneity of the available information, the authors suggest constructing syndromic classes by a multivariate statistical analysis and classification procedure grouping cases that share similar pathological characteristics. RESULTS: A three-step procedure was applied: first, a multiple correspondence analysis was performed on necropsy data to reduce them to their principal components. Then hierarchical ascendant clustering was used to partition the data. Finally the k-means algorithm was applied to strengthen the partitioning. Nine clusters were identified: three were species- and disease-specific, three were suggestive of specific pathological conditions but not species-specific, two covered a broader pathological condition and one was miscellaneous. The clusters reflected the most distinct and most frequent disease entities on which the surveillance network focused. They could be used to define distinct syndromes characterised by specific post-mortem findings. CONCLUSIONS: The chosen statistical clustering method was found to be a useful tool to retrospectively group cases from our database into distinct and meaningful pathological entities. Syndrome definition from post-mortem findings is potentially useful for early outbreak detection because it uses the earliest available information on disease in wildlife. Furthermore, the proposed typology allows each case to be attributed to a syndrome, thus enabling the exhaustive surveillance of health events through time series analyses. BioMed Central 2010-12-16 /pmc/articles/PMC3018415/ /pubmed/21162732 http://dx.doi.org/10.1186/1746-6148-6-56 Text en Copyright ©2010 Warns-Petit et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Warns-Petit, Eva Morignat, Eric Artois, Marc Calavas, Didier Unsupervised clustering of wildlife necropsy data for syndromic surveillance |
title | Unsupervised clustering of wildlife necropsy data for syndromic surveillance |
title_full | Unsupervised clustering of wildlife necropsy data for syndromic surveillance |
title_fullStr | Unsupervised clustering of wildlife necropsy data for syndromic surveillance |
title_full_unstemmed | Unsupervised clustering of wildlife necropsy data for syndromic surveillance |
title_short | Unsupervised clustering of wildlife necropsy data for syndromic surveillance |
title_sort | unsupervised clustering of wildlife necropsy data for syndromic surveillance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018415/ https://www.ncbi.nlm.nih.gov/pubmed/21162732 http://dx.doi.org/10.1186/1746-6148-6-56 |
work_keys_str_mv | AT warnspetiteva unsupervisedclusteringofwildlifenecropsydataforsyndromicsurveillance AT morignateric unsupervisedclusteringofwildlifenecropsydataforsyndromicsurveillance AT artoismarc unsupervisedclusteringofwildlifenecropsydataforsyndromicsurveillance AT calavasdidier unsupervisedclusteringofwildlifenecropsydataforsyndromicsurveillance |