Cargando…
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training
BACKGROUND: Hidden Markov models are widely employed by numerous bioinformatics programs used today. Applications range widely from comparative gene prediction to time-series analyses of micro-array data. The parameters of the underlying models need to be adjusted for specific data sets, for example...
Autores principales: | Lam, Tin Y, Meyer, Irmtraud M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019189/ https://www.ncbi.nlm.nih.gov/pubmed/21143925 http://dx.doi.org/10.1186/1748-7188-5-38 |
Ejemplares similares
-
Implementing EM and Viterbi algorithms for Hidden Markov Model in linear memory
por: Churbanov, Alexander, et al.
Publicado: (2008) -
HMMConverter 1.0: a toolbox for hidden Markov models
por: Lam, Tin Yin, et al.
Publicado: (2009) -
Harvest Stage Recognition and Potential Fruit Damage Indicator for Berries Based on Hidden Markov Models and the Viterbi Algorithm
por: Orchard, Marcos, et al.
Publicado: (2019) -
A new algorithm to train hidden Markov models for biological sequences with partial labels
por: Li, Jiefu, et al.
Publicado: (2021) -
A linear memory algorithm for Baum-Welch training
por: Miklós, István, et al.
Publicado: (2005)