Cargando…
Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study
BACKGROUND: The appropriate handling of missing covariate data in prognostic modelling studies is yet to be conclusively determined. A resampling study was performed to investigate the effects of different missing data methods on the performance of a prognostic model. METHODS: Observed data for 1000...
Autores principales: | Marshall, Andrea, Altman, Douglas G, Holder, Roger L |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019210/ https://www.ncbi.nlm.nih.gov/pubmed/21194416 http://dx.doi.org/10.1186/1471-2288-10-112 |
Ejemplares similares
-
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009) -
The Optimal Machine Learning-Based Missing Data Imputation for the Cox Proportional Hazard Model
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
por: Marshall, Andrea, et al.
Publicado: (2010) -
Multiple imputation in Cox regression when there are time‐varying effects of covariates
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models
por: Emura, Takeshi, et al.
Publicado: (2012)