Cargando…
Kernel based methods for accelerated failure time model with ultra-high dimensional data
BACKGROUND: Most genomic data have ultra-high dimensions with more than 10,000 genes (probes). Regularization methods with L(1 )and L(p )penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes), directly...
Autores principales: | Liu, Zhenqiu, Chen, Dechang, Tan, Ming, Jiang, Feng, Gartenhaus, Ronald B |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019227/ https://www.ncbi.nlm.nih.gov/pubmed/21176134 http://dx.doi.org/10.1186/1471-2105-11-606 |
Ejemplares similares
-
Gene and pathway identification with L(p )penalized Bayesian logistic regression
por: Liu, Zhenqiu, et al.
Publicado: (2008) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Combined performance of screening and variable selection methods in ultra-high dimensional data in predicting time-to-event outcomes
por: Pi, Lira, et al.
Publicado: (2018) -
Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data
por: Yoshida, Kosuke, et al.
Publicado: (2017) -
Corn360: a method for quantification of corn kernels
por: Gillette, Samantha, et al.
Publicado: (2023)