Cargando…
Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations
PURPOSE: To evaluate the performance of support vector machine, multi‐layer perceptron and radial basis function neural network as auxiliary tools to identify keratoconus from Orbscan II maps. METHODS: A total of 318 maps were selected and classified into four categories: normal (n = 172), astigmati...
Autores principales: | Souza, Murilo Barreto, Medeiros, Fabricio Witzel, Souza, Danilo Barreto, Garcia, Renato, Alves, Milton Ruiz |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020330/ https://www.ncbi.nlm.nih.gov/pubmed/21340208 http://dx.doi.org/10.1590/S1807-59322010001200002 |
Ejemplares similares
-
Relationship between the biomechanical properties of the cornea and anterior segment measurements
por: Souza, Murilo Barreto, et al.
Publicado: (2018) -
Sensitivity and Specificity of Posterior and Anterior Corneal Elevation Measured by Orbscan in Diagnosis of Clinical and Subclinical Keratoconus
por: Jafarinasab, Mohammad Reza, et al.
Publicado: (2015) -
Repeatability of curvature measurements in central and paracentral corneal areas of keratoconus patients using Orbscan and Pentacam
por: Mirzajani, Ali, et al.
Publicado: (2019) -
Central Corneal Thickness Measurement by Ultrasound versus Orbscan II
por: Faramarzi, Amir, et al.
Publicado: (2008) -
The distribution of orbscan indices in young population
por: Hashemi, Hassan, et al.
Publicado: (2016)