Cargando…

Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp

BACKGROUND: South America's western coastline, extending in a near-straight line across some 35 latitudinal degrees, presents an elegant setting for assessing both contemporary and historic influences on cladogenesis in the marine environment. Southern bull-kelp (Durvillaea antarctica) has a br...

Descripción completa

Detalles Bibliográficos
Autores principales: Fraser, Ceridwen I, Thiel, Martin, Spencer, Hamish G, Waters, Jonathan M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020628/
https://www.ncbi.nlm.nih.gov/pubmed/20594354
http://dx.doi.org/10.1186/1471-2148-10-203
_version_ 1782196315527053312
author Fraser, Ceridwen I
Thiel, Martin
Spencer, Hamish G
Waters, Jonathan M
author_facet Fraser, Ceridwen I
Thiel, Martin
Spencer, Hamish G
Waters, Jonathan M
author_sort Fraser, Ceridwen I
collection PubMed
description BACKGROUND: South America's western coastline, extending in a near-straight line across some 35 latitudinal degrees, presents an elegant setting for assessing both contemporary and historic influences on cladogenesis in the marine environment. Southern bull-kelp (Durvillaea antarctica) has a broad distribution along much of the Chilean coast. This species represents an ideal model taxon for studies of coastal marine connectivity and of palaeoclimatic effects, as it grows only on exposed rocky coasts and is absent from beaches and ice-affected shores. We expected that, along the central Chilean coast, D. antarctica would show considerable phylogeographic structure as a consequence of the isolating effects of distance and habitat discontinuities. In contrast, we hypothesised that further south - throughout the region affected by the Patagonian Ice Sheet at the Last Glacial Maximum (LGM) - D. antarctica would show relatively little genetic structure, reflecting postglacial recolonisation. RESULTS: Mitochondrial (COI) and chloroplast (rbcL) DNA analyses of D. antarctica from 24 Chilean localities (164 individuals) revealed two deeply divergent (4.5 - 6.1% for COI, 1.4% for rbcL) clades from the centre and south of the country, with contrasting levels and patterns of genetic structure. Among populations from central Chile (32° - 44°S), substantial phylogeographic structure was evident across small spatial scales, and a significant isolation-by-distance effect was observed. Genetic disjunctions in this region appear to correspond to the presence of long beaches. In contrast to the genetic structure found among central Chilean populations, samples from the southern Chilean Patagonian region (49° - 56°S) were genetically homogeneous and identical to a haplotype recently found throughout the subantarctic region. CONCLUSIONS: Southern (Patagonian) Chile has been recolonised by D. antarctica relatively recently, probably since the LGM. The inferred trans-oceanic ancestry of these Patagonian populations supports the notion that D. antarctica is capable of long-distance dispersal via rafting. In contrast, further north in central Chile, the correspondence of genetic disjunctions in D. antarctica with long beaches indicates that habitat discontinuity drives genetic isolation among established kelp populations. We conclude that rafting facilitates colonisation of unoccupied shores, but has limited potential to enhance gene-flow among established populations. Broadly, this study demonstrates that some taxa may be considered to have either high or low dispersal potential across different temporal and geographic scales.
format Text
id pubmed-3020628
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30206282011-01-14 Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp Fraser, Ceridwen I Thiel, Martin Spencer, Hamish G Waters, Jonathan M BMC Evol Biol Research Article BACKGROUND: South America's western coastline, extending in a near-straight line across some 35 latitudinal degrees, presents an elegant setting for assessing both contemporary and historic influences on cladogenesis in the marine environment. Southern bull-kelp (Durvillaea antarctica) has a broad distribution along much of the Chilean coast. This species represents an ideal model taxon for studies of coastal marine connectivity and of palaeoclimatic effects, as it grows only on exposed rocky coasts and is absent from beaches and ice-affected shores. We expected that, along the central Chilean coast, D. antarctica would show considerable phylogeographic structure as a consequence of the isolating effects of distance and habitat discontinuities. In contrast, we hypothesised that further south - throughout the region affected by the Patagonian Ice Sheet at the Last Glacial Maximum (LGM) - D. antarctica would show relatively little genetic structure, reflecting postglacial recolonisation. RESULTS: Mitochondrial (COI) and chloroplast (rbcL) DNA analyses of D. antarctica from 24 Chilean localities (164 individuals) revealed two deeply divergent (4.5 - 6.1% for COI, 1.4% for rbcL) clades from the centre and south of the country, with contrasting levels and patterns of genetic structure. Among populations from central Chile (32° - 44°S), substantial phylogeographic structure was evident across small spatial scales, and a significant isolation-by-distance effect was observed. Genetic disjunctions in this region appear to correspond to the presence of long beaches. In contrast to the genetic structure found among central Chilean populations, samples from the southern Chilean Patagonian region (49° - 56°S) were genetically homogeneous and identical to a haplotype recently found throughout the subantarctic region. CONCLUSIONS: Southern (Patagonian) Chile has been recolonised by D. antarctica relatively recently, probably since the LGM. The inferred trans-oceanic ancestry of these Patagonian populations supports the notion that D. antarctica is capable of long-distance dispersal via rafting. In contrast, further north in central Chile, the correspondence of genetic disjunctions in D. antarctica with long beaches indicates that habitat discontinuity drives genetic isolation among established kelp populations. We conclude that rafting facilitates colonisation of unoccupied shores, but has limited potential to enhance gene-flow among established populations. Broadly, this study demonstrates that some taxa may be considered to have either high or low dispersal potential across different temporal and geographic scales. BioMed Central 2010-07-01 /pmc/articles/PMC3020628/ /pubmed/20594354 http://dx.doi.org/10.1186/1471-2148-10-203 Text en Copyright ©2010 Fraser et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Fraser, Ceridwen I
Thiel, Martin
Spencer, Hamish G
Waters, Jonathan M
Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp
title Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp
title_full Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp
title_fullStr Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp
title_full_unstemmed Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp
title_short Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp
title_sort contemporary habitat discontinuity and historic glacial ice drive genetic divergence in chilean kelp
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020628/
https://www.ncbi.nlm.nih.gov/pubmed/20594354
http://dx.doi.org/10.1186/1471-2148-10-203
work_keys_str_mv AT fraserceridweni contemporaryhabitatdiscontinuityandhistoricglacialicedrivegeneticdivergenceinchileankelp
AT thielmartin contemporaryhabitatdiscontinuityandhistoricglacialicedrivegeneticdivergenceinchileankelp
AT spencerhamishg contemporaryhabitatdiscontinuityandhistoricglacialicedrivegeneticdivergenceinchileankelp
AT watersjonathanm contemporaryhabitatdiscontinuityandhistoricglacialicedrivegeneticdivergenceinchileankelp