Cargando…
Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data
BACKGROUND: Using DNA microarrays, we have developed two novel models for tumor classification and target gene prediction. First, gene expression profiles are summarized by optimally selected Self-Organizing Maps (SOMs), followed by tumor sample classification by Fuzzy C-means clustering. Then, the...
Autores principales: | Wang, Junbai, Bø, Trond Hellem, Jonassen, Inge, Myklebost, Ola, Hovig, Eivind |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC302113/ https://www.ncbi.nlm.nih.gov/pubmed/14651757 http://dx.doi.org/10.1186/1471-2105-4-60 |
Ejemplares similares
-
Profound influence of microarray scanner characteristics on gene expression ratios: analysis and procedure for correction
por: Lyng, Heidi, et al.
Publicado: (2004) -
New feature subset selection procedures for classification of expression profiles
por: Bø, Trond Hellem, et al.
Publicado: (2002) -
Identifying pathogenic processes by integrating microarray data with prior knowledge
por: Nygård, Ståle, et al.
Publicado: (2014) -
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
por: Kim, Eun-Youn, et al.
Publicado: (2009) -
FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
por: Fu, Limin, et al.
Publicado: (2007)