Cargando…
Dynamic causal modelling of effective connectivity from fMRI: Are results reproducible and sensitive to Parkinson's disease and its treatment?
Dynamic causal modelling (DCM) of functional magnetic resonance imaging (fMRI) data offers new insights into the pathophysiology of neurological disease and mechanisms of effective therapies. Current applications can be used both to identify the most likely functional brain network underlying observ...
Autores principales: | Rowe, J.B., Hughes, L.E., Barker, R.A., Owen, A.M. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021391/ https://www.ncbi.nlm.nih.gov/pubmed/20056151 http://dx.doi.org/10.1016/j.neuroimage.2009.12.080 |
Ejemplares similares
-
Variational Bayesian causal connectivity analysis for fMRI
por: Luessi, Martin, et al.
Publicado: (2014) -
Fostering reproducible fMRI research
Publicado: (2017) -
Reproducibility of Graph Metrics in fMRI Networks
por: Telesford, Qawi K., et al.
Publicado: (2010) -
Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI()
por: Koush, Yury, et al.
Publicado: (2013) -
Higher Sensitivity and Reproducibility of Wavelet-Based Amplitude of Resting-State fMRI
por: Luo, Fei-Fei, et al.
Publicado: (2020)