Cargando…

Tools for efficient epistasis detection in genome-wide association study

BACKGROUND: Genome-wide association study (GWAS) aims to find genetic factors underlying complex phenotypic traits, for which epistasis or gene-gene interaction detection is often preferred over single-locus approach. However, the computational burden has been a major hurdle to apply epistasis test...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiang, Huang, Shunping, Zou, Fei, Wang, Wei
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022563/
https://www.ncbi.nlm.nih.gov/pubmed/21205316
http://dx.doi.org/10.1186/1751-0473-6-1
Descripción
Sumario:BACKGROUND: Genome-wide association study (GWAS) aims to find genetic factors underlying complex phenotypic traits, for which epistasis or gene-gene interaction detection is often preferred over single-locus approach. However, the computational burden has been a major hurdle to apply epistasis test in the genome-wide scale due to a large number of single nucleotide polymorphism (SNP) pairs to be tested. RESULTS: We have developed a set of three efficient programs, FastANOVA, COE and TEAM, that support epistasis test in a variety of problem settings in GWAS. These programs utilize permutation test to properly control error rate such as family-wise error rate (FWER) and false discovery rate (FDR). They guarantee to find the optimal solutions, and significantly speed up the process of epistasis detection in GWAS. CONCLUSIONS: A web server with user interface and source codes are available at the website http://www.csbio.unc.edu/epistasis/. The source codes are also available at SourceForge http://sourceforge.net/projects/epistasis/.