Cargando…
A grammar-based distance metric enables fast and accurate clustering of large sets of 16S sequences
BACKGROUND: We propose a sequence clustering algorithm and compare the partition quality and execution time of the proposed algorithm with those of a popular existing algorithm. The proposed clustering algorithm uses a grammar-based distance metric to determine partitioning for a set of biological s...
Autores principales: | Russell, David J, Way, Samuel F, Benson, Andrew K, Sayood, Khalid |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022630/ https://www.ncbi.nlm.nih.gov/pubmed/21167044 http://dx.doi.org/10.1186/1471-2105-11-601 |
Ejemplares similares
-
Grammar-based distance in progressive multiple sequence alignment
por: Russell, David J, et al.
Publicado: (2008) -
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
Choosing an imbalance metric for covariate-constrained randomization in multiple-arm cluster-randomized trials
por: Ciolino, Jody D., et al.
Publicado: (2019) -
PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes
por: Zeng, Jiaxiong, et al.
Publicado: (2022) -
An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data
por: Li, Chenhao, et al.
Publicado: (2019)