Cargando…
Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET
BACKGROUND: Primary and secondary drug resistance to imatinib and sunitinib in patients with gastrointestinal stromal tumors (GISTs) has led to a pressing need for new therapeutic strategies such as drug combinations. Most GISTs are caused by mutations in the KIT receptor, leading to upregulated KIT...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022678/ https://www.ncbi.nlm.nih.gov/pubmed/21192792 http://dx.doi.org/10.1186/1756-9966-29-173 |
_version_ | 1782196549452824576 |
---|---|
author | Pantaleo, Maria Abbondanza Nicoletti, Giordano Nanni, Cristina Gnocchi, Chiara Landuzzi, Lorena Quarta, Carmelo Boschi, Stefano Nannini, Margherita Di Battista, Monica Castellucci, Paolo Fanti, Stefano Lollini, Pier Luigi Bellan, Elena Castelli, Mauro Rubello, Domenico Biasco, Guido |
author_facet | Pantaleo, Maria Abbondanza Nicoletti, Giordano Nanni, Cristina Gnocchi, Chiara Landuzzi, Lorena Quarta, Carmelo Boschi, Stefano Nannini, Margherita Di Battista, Monica Castellucci, Paolo Fanti, Stefano Lollini, Pier Luigi Bellan, Elena Castelli, Mauro Rubello, Domenico Biasco, Guido |
author_sort | Pantaleo, Maria Abbondanza |
collection | PubMed |
description | BACKGROUND: Primary and secondary drug resistance to imatinib and sunitinib in patients with gastrointestinal stromal tumors (GISTs) has led to a pressing need for new therapeutic strategies such as drug combinations. Most GISTs are caused by mutations in the KIT receptor, leading to upregulated KIT tyrosine kinase activity. Imatinib and nilotinib directly inhibit the kinase activity of KIT, while RAD001 (everolimus) inhibits mTOR. We report a preclinical study on drug combinations in a xenograft model of GIST in which effects on tumor dimensions and metabolic activity were assessed by small animal PET imaging. METHODS: Rag2-/-; γcommon -/- male mice were injected s.c. into the right leg with GIST 882. The animals were randomized into 6 groups of 6 animals each for different treatment regimens: No therapy (control), imatinib (150 mg/kg b.i.d.) by oral gavage for 6 days, then once/day for another 7 days, everolimus (10 mg/kg/d.) by oral gavage, everolimus (10 mg/kg/d.) + imatinib (150 mg/kg b.i.d.) by oral gavage for 6 days, then once/day for another 7 days, nilotinib (75 mg/kg/d.) by oral gavage, nilotinib (75 mg/kg/d.) + imatinib (150 mg/kg b.i.d) by oral gavage for 6 days, then once/day for another 7 days. Tumor growth control was evaluated by measuring tumor volume (cm(3)). Small animal PET (GE Explore tomography) was used to evaluate tumor metabolism and performed in one animal per group at base-line then after 4 and 13 days of treatment. RESULTS: After a median latency time of 31 days, tumors grew in all animals (volume 0,06-0,15 cm(3)) and the treatments began at day 38 after cell injection. Tumor volume control (cm3) after 13 days of treatment was > 0.5 for imatinib alone and nilotinib alone, and < 0.5 for the 2 combinations of drugs and for everolimus alone. The baseline FDG uptake was positive in all animals. FDG/SUV/TBR was strongly reduced over time by everolimus both as a single agent and in combination with imatinib respectively: 3.1 vs. 2.3 vs. 1.9 and 2.5 vs 2.3 vs 0. CONCLUSIONS: As single agents, all drugs showed an anti-tumor effect in GIST xenografts but everolimus was superior. The everolimus plus imatinib combination appeared to be the most active regimen both in terms of inhibiting tumor growth and tumor metabolism. The integration of everolimus in GIST treatment merits further investigation. |
format | Text |
id | pubmed-3022678 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30226782011-01-19 Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET Pantaleo, Maria Abbondanza Nicoletti, Giordano Nanni, Cristina Gnocchi, Chiara Landuzzi, Lorena Quarta, Carmelo Boschi, Stefano Nannini, Margherita Di Battista, Monica Castellucci, Paolo Fanti, Stefano Lollini, Pier Luigi Bellan, Elena Castelli, Mauro Rubello, Domenico Biasco, Guido J Exp Clin Cancer Res Research BACKGROUND: Primary and secondary drug resistance to imatinib and sunitinib in patients with gastrointestinal stromal tumors (GISTs) has led to a pressing need for new therapeutic strategies such as drug combinations. Most GISTs are caused by mutations in the KIT receptor, leading to upregulated KIT tyrosine kinase activity. Imatinib and nilotinib directly inhibit the kinase activity of KIT, while RAD001 (everolimus) inhibits mTOR. We report a preclinical study on drug combinations in a xenograft model of GIST in which effects on tumor dimensions and metabolic activity were assessed by small animal PET imaging. METHODS: Rag2-/-; γcommon -/- male mice were injected s.c. into the right leg with GIST 882. The animals were randomized into 6 groups of 6 animals each for different treatment regimens: No therapy (control), imatinib (150 mg/kg b.i.d.) by oral gavage for 6 days, then once/day for another 7 days, everolimus (10 mg/kg/d.) by oral gavage, everolimus (10 mg/kg/d.) + imatinib (150 mg/kg b.i.d.) by oral gavage for 6 days, then once/day for another 7 days, nilotinib (75 mg/kg/d.) by oral gavage, nilotinib (75 mg/kg/d.) + imatinib (150 mg/kg b.i.d) by oral gavage for 6 days, then once/day for another 7 days. Tumor growth control was evaluated by measuring tumor volume (cm(3)). Small animal PET (GE Explore tomography) was used to evaluate tumor metabolism and performed in one animal per group at base-line then after 4 and 13 days of treatment. RESULTS: After a median latency time of 31 days, tumors grew in all animals (volume 0,06-0,15 cm(3)) and the treatments began at day 38 after cell injection. Tumor volume control (cm3) after 13 days of treatment was > 0.5 for imatinib alone and nilotinib alone, and < 0.5 for the 2 combinations of drugs and for everolimus alone. The baseline FDG uptake was positive in all animals. FDG/SUV/TBR was strongly reduced over time by everolimus both as a single agent and in combination with imatinib respectively: 3.1 vs. 2.3 vs. 1.9 and 2.5 vs 2.3 vs 0. CONCLUSIONS: As single agents, all drugs showed an anti-tumor effect in GIST xenografts but everolimus was superior. The everolimus plus imatinib combination appeared to be the most active regimen both in terms of inhibiting tumor growth and tumor metabolism. The integration of everolimus in GIST treatment merits further investigation. BioMed Central 2010-12-30 /pmc/articles/PMC3022678/ /pubmed/21192792 http://dx.doi.org/10.1186/1756-9966-29-173 Text en Copyright ©2010 Pantaleo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Pantaleo, Maria Abbondanza Nicoletti, Giordano Nanni, Cristina Gnocchi, Chiara Landuzzi, Lorena Quarta, Carmelo Boschi, Stefano Nannini, Margherita Di Battista, Monica Castellucci, Paolo Fanti, Stefano Lollini, Pier Luigi Bellan, Elena Castelli, Mauro Rubello, Domenico Biasco, Guido Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET |
title | Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET |
title_full | Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET |
title_fullStr | Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET |
title_full_unstemmed | Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET |
title_short | Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET |
title_sort | preclinical evaluation of kit/pdgfra and mtor inhibitors in gastrointestinal stromal tumors using small animal fdg pet |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022678/ https://www.ncbi.nlm.nih.gov/pubmed/21192792 http://dx.doi.org/10.1186/1756-9966-29-173 |
work_keys_str_mv | AT pantaleomariaabbondanza preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT nicolettigiordano preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT nannicristina preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT gnocchichiara preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT landuzzilorena preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT quartacarmelo preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT boschistefano preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT nanninimargherita preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT dibattistamonica preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT castelluccipaolo preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT fantistefano preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT lollinipierluigi preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT bellanelena preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT castellimauro preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT rubellodomenico preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet AT biascoguido preclinicalevaluationofkitpdgfraandmtorinhibitorsingastrointestinalstromaltumorsusingsmallanimalfdgpet |