Cargando…
The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model
BACKGROUND: During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022852/ https://www.ncbi.nlm.nih.gov/pubmed/21176155 http://dx.doi.org/10.1186/1471-2458-10-778 |
_version_ | 1782196598388817920 |
---|---|
author | Shi, Pengyi Keskinocak, Pinar Swann, Julie L Lee, Bruce Y |
author_facet | Shi, Pengyi Keskinocak, Pinar Swann, Julie L Lee, Bruce Y |
author_sort | Shi, Pengyi |
collection | PubMed |
description | BACKGROUND: During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic. METHODS: We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R(0 )(1.3, 1.5, 1.8) are explored. RESULTS: Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R(0 )= 1.5. CONCLUSIONS: Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high. |
format | Text |
id | pubmed-3022852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30228522011-01-19 The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model Shi, Pengyi Keskinocak, Pinar Swann, Julie L Lee, Bruce Y BMC Public Health Research Article BACKGROUND: During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic. METHODS: We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R(0 )(1.3, 1.5, 1.8) are explored. RESULTS: Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R(0 )= 1.5. CONCLUSIONS: Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high. BioMed Central 2010-12-21 /pmc/articles/PMC3022852/ /pubmed/21176155 http://dx.doi.org/10.1186/1471-2458-10-778 Text en Copyright ©2010 Shi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shi, Pengyi Keskinocak, Pinar Swann, Julie L Lee, Bruce Y The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
title | The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
title_full | The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
title_fullStr | The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
title_full_unstemmed | The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
title_short | The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
title_sort | impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022852/ https://www.ncbi.nlm.nih.gov/pubmed/21176155 http://dx.doi.org/10.1186/1471-2458-10-778 |
work_keys_str_mv | AT shipengyi theimpactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT keskinocakpinar theimpactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT swannjuliel theimpactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT leebrucey theimpactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT shipengyi impactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT keskinocakpinar impactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT swannjuliel impactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel AT leebrucey impactofmassgatheringsandholidaytravelingonthecourseofaninfluenzapandemicacomputationalmodel |