Cargando…
A molecular inversion probe assay for detecting alternative splicing
ABSRACT: BACKGROUND: A sensitive, high-throughput method for monitoring pre-mRNA splicing on a genomic scale is needed to understand the spectrum of alternatively spliced mRNA in human cells. RESULTS: We adapted Molecular Inversion Probes (MIPs), a padlock-probe based technology, for the multiplexed...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022918/ https://www.ncbi.nlm.nih.gov/pubmed/21167051 http://dx.doi.org/10.1186/1471-2164-11-712 |
Sumario: | ABSRACT: BACKGROUND: A sensitive, high-throughput method for monitoring pre-mRNA splicing on a genomic scale is needed to understand the spectrum of alternatively spliced mRNA in human cells. RESULTS: We adapted Molecular Inversion Probes (MIPs), a padlock-probe based technology, for the multiplexed capture and quantitation of individual splice events in human tissues. Individual MIP capture probes can be quantified using either DNA microarrays or high-throughput sequencing, which permits independent assessment of each spliced junction. Using our methodology we successfully identified 100% of our positive controls and showed that there is a strong correlation between the data from our alternative splicing MIP (asMIP) assay and quantitative PCR. CONCLUSION: The asMIP assay provides a sensitive, accurate and multiplexed means for measuring pre-mRNA splicing. Fully optimized, we estimate that the assay could accommodate a throughput of greater than 20,000 splice junctions in a single reaction. This would represent a significant improvement over existing technologies. |
---|