Cargando…

Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data

BACKGROUND: Saccharomyces cerevisiae is the first eukaryotic organism for which a multi-compartment genome-scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast has been introduced. These metabolic models have been extensively used to elucidate...

Descripción completa

Detalles Bibliográficos
Autores principales: Zomorrodi, Ali R, Maranas, Costas D
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023687/
https://www.ncbi.nlm.nih.gov/pubmed/21190580
http://dx.doi.org/10.1186/1752-0509-4-178
_version_ 1782196678958252032
author Zomorrodi, Ali R
Maranas, Costas D
author_facet Zomorrodi, Ali R
Maranas, Costas D
author_sort Zomorrodi, Ali R
collection PubMed
description BACKGROUND: Saccharomyces cerevisiae is the first eukaryotic organism for which a multi-compartment genome-scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast has been introduced. These metabolic models have been extensively used to elucidate the organizational principles of yeast metabolism and drive yeast strain engineering strategies for targeted overproductions. They have also served as a starting point and a benchmark for the reconstruction of genome-scale metabolic models for other eukaryotic organisms. In spite of the successive improvements in the details of the described metabolic processes, even the recent yeast model (i.e., iMM904) remains significantly less predictive than the latest E. coli model (i.e., iAF1260). This is manifested by its significantly lower specificity in predicting the outcome of grow/no grow experiments in comparison to the E. coli model. RESULTS: In this paper we make use of the automated GrowMatch procedure for restoring consistency with single gene deletion experiments in yeast and extend the procedure to make use of synthetic lethality data using the genome-scale model iMM904 as a basis. We identified and vetted using literature sources 120 distinct model modifications including various regulatory constraints for minimal and YP media. The incorporation of the suggested modifications led to a substantial increase in the fraction of correctly predicted lethal knockouts (i.e., specificity) from 38.84% (87 out of 224) to 53.57% (120 out of 224) for the minimal medium and from 24.73% (45 out of 182) to 40.11% (73 out of 182) for the YP medium. Synthetic lethality predictions improved from 12.03% (16 out of 133) to 23.31% (31 out of 133) for the minimal medium and from 6.96% (8 out of 115) to 13.04% (15 out of 115) for the YP medium. CONCLUSIONS: Overall, this study provides a roadmap for the computationally driven correction of multi-compartment genome-scale metabolic models and demonstrates the value of synthetic lethals as curation agents.
format Text
id pubmed-3023687
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30236872011-01-20 Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data Zomorrodi, Ali R Maranas, Costas D BMC Syst Biol Research Article BACKGROUND: Saccharomyces cerevisiae is the first eukaryotic organism for which a multi-compartment genome-scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast has been introduced. These metabolic models have been extensively used to elucidate the organizational principles of yeast metabolism and drive yeast strain engineering strategies for targeted overproductions. They have also served as a starting point and a benchmark for the reconstruction of genome-scale metabolic models for other eukaryotic organisms. In spite of the successive improvements in the details of the described metabolic processes, even the recent yeast model (i.e., iMM904) remains significantly less predictive than the latest E. coli model (i.e., iAF1260). This is manifested by its significantly lower specificity in predicting the outcome of grow/no grow experiments in comparison to the E. coli model. RESULTS: In this paper we make use of the automated GrowMatch procedure for restoring consistency with single gene deletion experiments in yeast and extend the procedure to make use of synthetic lethality data using the genome-scale model iMM904 as a basis. We identified and vetted using literature sources 120 distinct model modifications including various regulatory constraints for minimal and YP media. The incorporation of the suggested modifications led to a substantial increase in the fraction of correctly predicted lethal knockouts (i.e., specificity) from 38.84% (87 out of 224) to 53.57% (120 out of 224) for the minimal medium and from 24.73% (45 out of 182) to 40.11% (73 out of 182) for the YP medium. Synthetic lethality predictions improved from 12.03% (16 out of 133) to 23.31% (31 out of 133) for the minimal medium and from 6.96% (8 out of 115) to 13.04% (15 out of 115) for the YP medium. CONCLUSIONS: Overall, this study provides a roadmap for the computationally driven correction of multi-compartment genome-scale metabolic models and demonstrates the value of synthetic lethals as curation agents. BioMed Central 2010-12-29 /pmc/articles/PMC3023687/ /pubmed/21190580 http://dx.doi.org/10.1186/1752-0509-4-178 Text en Copyright ©2010 Zomorrodi and Maranas; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zomorrodi, Ali R
Maranas, Costas D
Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
title Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
title_full Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
title_fullStr Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
title_full_unstemmed Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
title_short Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
title_sort improving the imm904 s. cerevisiae metabolic model using essentiality and synthetic lethality data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023687/
https://www.ncbi.nlm.nih.gov/pubmed/21190580
http://dx.doi.org/10.1186/1752-0509-4-178
work_keys_str_mv AT zomorrodialir improvingtheimm904scerevisiaemetabolicmodelusingessentialityandsyntheticlethalitydata
AT maranascostasd improvingtheimm904scerevisiaemetabolicmodelusingessentialityandsyntheticlethalitydata