Cargando…
Clustering gene expression data with a penalized graph-based metric
BACKGROUND: The search for cluster structure in microarray datasets is a base problem for the so-called "-omic sciences". A difficult problem in clustering is how to handle data with a manifold structure, i.e. data that is not shaped in the form of compact clouds of points, forming arbitra...
Autores principales: | Bayá, Ariel E, Granitto, Pablo M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023695/ https://www.ncbi.nlm.nih.gov/pubmed/21205299 http://dx.doi.org/10.1186/1471-2105-12-2 |
Ejemplares similares
-
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
Selecting single cell clustering parameter values using subsampling-based robustness metrics
por: Patterson-Cross, Ryan B., et al.
Publicado: (2021) -
Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
por: Novák, Petr, et al.
Publicado: (2010) -
Exploratory and inferential analysis of gene cluster neighborhood graphs
por: Scharl, Theresa, et al.
Publicado: (2009) -
Lag penalized weighted correlation for time series clustering
por: Chandereng, Thevaa, et al.
Publicado: (2020)