Cargando…

Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway

BACKGROUND: Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT(1B)), angiotensin II type 1 (AT(1)), and endothelin type B (ET(B)) receptors, in the vessel walls within the ischemic region, which further impairs local...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahnstedt, Hilda, Säveland, Hans, Nilsson, Ola, Edvinsson, Lars
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023719/
https://www.ncbi.nlm.nih.gov/pubmed/21223556
http://dx.doi.org/10.1186/1471-2202-12-5
Descripción
Sumario:BACKGROUND: Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT(1B)), angiotensin II type 1 (AT(1)), and endothelin type B (ET(B)) receptors, in the vessel walls within the ischemic region, which further impairs local blood flow and aggravates tissue damage. This receptor upregulation occurs via activation of the mitogen-activated protein kinase pathway. We therefore hypothesized an important role for B-Raf, the first signaling molecule in the pathway. To test our hypothesis, human cerebral arteries were incubated at 37°C for 48 h in the absence or presence of a B-Raf inhibitor: SB-386023 or SB-590885. Contractile properties were evaluated in a myograph and protein expression of the individual receptors and activated phosphorylated B-Raf (p-B-Raf) was evaluated immunohistochemically. RESULTS: 5-HT(1B), AT(1), and ET(B )receptor-mediated contractions were significantly reduced by application of SB-590885, and to a smaller extent by SB-386023. A marked reduction in AT(1 )receptor immunoreactivity was observed after treatment with SB-590885. Treatment with SB-590885 and SB-386023 diminished the culture-induced increase of p-B-Raf immunoreactivity. CONCLUSIONS: B-Raf signaling has a key function in the altered expression of vascular contractile receptors observed after organ culture. Therefore, specific targeting of B-Raf might be a novel approach to reduce tissue damage after cerebral ischemia by preventing the previously observed upregulation of contractile receptors in smooth muscle cells.