Cargando…

Assessment of RET/PTC1 and RET/PTC3 rearrangements in fine-needle aspiration biopsy specimens collected from patients with Hashimoto's thyroiditis

BACKGROUND: RET/PTC rearrangements are the most frequent molecular changes in papillary thyroid carcinoma (PTC). So far, 15 main RET/PTC rearrangements have been described, among which RET/PTC1 and RET/PTC3 are the most common in PTC - especially in radiation-induced tumours. RET/PTC1 and RET/PTC3 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cyniak-Magierska, Anna, Wojciechowska-Durczyńska, Katarzyna, Krawczyk-Rusiecka, Kinga, Zygmunt, Arkadiusz, Lewiński, Andrzej
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023781/
https://www.ncbi.nlm.nih.gov/pubmed/21219595
http://dx.doi.org/10.1186/1756-6614-4-5
Descripción
Sumario:BACKGROUND: RET/PTC rearrangements are the most frequent molecular changes in papillary thyroid carcinoma (PTC). So far, 15 main RET/PTC rearrangements have been described, among which RET/PTC1 and RET/PTC3 are the most common in PTC - especially in radiation-induced tumours. RET/PTC1 and RET/PTC3 are the result of intrachromosomal paracentric inversions in chromosome 10, where RET and the activating genes (H4 and ELE1, respectively) are located. Recently, RET/PTC rearrangements have been shown not only in PTC but also in benign thyroid lesions, including Hashimoto's thyroiditis (HT). The aim of study was an assessment of RET/PTC1 and RET/PTC3 rearrangements in patients with Hashimoto's thyroiditis. MATERIALS AND METHODS: Thyroid aspirates, eligible for the study, were obtained from 26 patients with Hashimoto's thyroiditis by fine-needle aspiration biopsy (FNAB). Each aspirate was smeared for conventional cytology, while its remaining part was immediately washed out of the needle. The cells, obtained from the needle, were used in further investigation. Total RNA from FNAB was extracted by use of an RNeasy Micro Kit, based on modified Chomczynski and Sacchi's method and reverse transcription (RT-PCR) was done. Quantitative evaluation of RET/PTC1 and RET/PTC3 rearrangements by real-time PCR was performed by an ABI PRISM(® )7500 Sequence Detection System. In the study, PTC tissues with known RET/PTC1 and RET/PTC3 rearrangements served as a reference standard (calibrator), while β-actin gene was used as endogenous control. RESULTS: Amplification reactions were done in triplicate for each examined sample. No RET/PTC1 and RET/PTC3 rearrangements were found in the examined samples. CONCLUSIONS: Our results indicate that RET/PTC1 and RET/PTC3 rearrangements in Hashimoto's thyroiditis, if any, are rather rare events and further investigations should be conducted in order to determine molecular changes, connecting Hashimoto's thyroiditis with PTC.