Cargando…

Transcriptomics of the Bed Bug (Cimex lectularius)

BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Xiaodong, Mamidala, Praveen, Rajarapu, Swapna P., Jones, Susan C., Mittapalli, Omprakash
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023805/
https://www.ncbi.nlm.nih.gov/pubmed/21283830
http://dx.doi.org/10.1371/journal.pone.0016336
_version_ 1782196710666141696
author Bai, Xiaodong
Mamidala, Praveen
Rajarapu, Swapna P.
Jones, Susan C.
Mittapalli, Omprakash
author_facet Bai, Xiaodong
Mamidala, Praveen
Rajarapu, Swapna P.
Jones, Susan C.
Mittapalli, Omprakash
author_sort Bai, Xiaodong
collection PubMed
description BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies.
format Text
id pubmed-3023805
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-30238052011-01-31 Transcriptomics of the Bed Bug (Cimex lectularius) Bai, Xiaodong Mamidala, Praveen Rajarapu, Swapna P. Jones, Susan C. Mittapalli, Omprakash PLoS One Research Article BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies. Public Library of Science 2011-01-19 /pmc/articles/PMC3023805/ /pubmed/21283830 http://dx.doi.org/10.1371/journal.pone.0016336 Text en Bai et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bai, Xiaodong
Mamidala, Praveen
Rajarapu, Swapna P.
Jones, Susan C.
Mittapalli, Omprakash
Transcriptomics of the Bed Bug (Cimex lectularius)
title Transcriptomics of the Bed Bug (Cimex lectularius)
title_full Transcriptomics of the Bed Bug (Cimex lectularius)
title_fullStr Transcriptomics of the Bed Bug (Cimex lectularius)
title_full_unstemmed Transcriptomics of the Bed Bug (Cimex lectularius)
title_short Transcriptomics of the Bed Bug (Cimex lectularius)
title_sort transcriptomics of the bed bug (cimex lectularius)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023805/
https://www.ncbi.nlm.nih.gov/pubmed/21283830
http://dx.doi.org/10.1371/journal.pone.0016336
work_keys_str_mv AT baixiaodong transcriptomicsofthebedbugcimexlectularius
AT mamidalapraveen transcriptomicsofthebedbugcimexlectularius
AT rajarapuswapnap transcriptomicsofthebedbugcimexlectularius
AT jonessusanc transcriptomicsofthebedbugcimexlectularius
AT mittapalliomprakash transcriptomicsofthebedbugcimexlectularius