Cargando…
From Spiking Neuron Models to Linear-Nonlinear Models
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate...
Autores principales: | Ostojic, Srdjan, Brunel, Nicolas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024256/ https://www.ncbi.nlm.nih.gov/pubmed/21283777 http://dx.doi.org/10.1371/journal.pcbi.1001056 |
Ejemplares similares
-
Response nonlinearities in networks of spiking neurons
por: Sanzeni, Alessandro, et al.
Publicado: (2020) -
A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
por: Schaffer, Evan S., et al.
Publicado: (2013) -
Bayesian Inference for Generalized Linear Models for Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2010) -
Linear Response of General Observables in Spiking Neuronal Network Models
por: Cessac, Bruno, et al.
Publicado: (2021) -
Inferring and validating mechanistic models of neural microcircuits based on spike-train data
por: Ladenbauer, Josef, et al.
Publicado: (2019)