Cargando…
MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features
BACKGROUND: MicroRNAs (simply miRNAs) are derived from larger hairpin RNA precursors and play essential regular roles in both animals and plants. A number of computational methods for miRNA genes finding have been proposed in the past decade, yet the problem is far from being tackled, especially whe...
Autores principales: | Ding, Jiandong, Zhou, Shuigeng, Guan, Jihong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024864/ https://www.ncbi.nlm.nih.gov/pubmed/21172046 http://dx.doi.org/10.1186/1471-2105-11-S11-S11 |
Ejemplares similares
-
SVM and SVM Ensembles in Breast Cancer Prediction
por: Huang, Min-Wei, et al.
Publicado: (2017) -
miRFam: an effective automatic miRNA classification method based on n-grams and a multiclass SVM
por: Ding, Jiandong, et al.
Publicado: (2011) -
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
Cardiovascular and Diabetes Diseases Classification Using Ensemble Stacking Classifiers with SVM as a Meta Classifier
por: Khan, Asfandyar, et al.
Publicado: (2022)