Cargando…
Overcoming bias and systematic errors in next generation sequencing data
Considerable time and effort has been spent in developing analysis and quality assessment methods to allow the use of microarrays in a clinical setting. As is the case for microarrays and other high-throughput technologies, data from new high-throughput sequencing technologies are subject to technol...
Autores principales: | Taub, Margaret A, Corrada Bravo, Hector, Irizarry, Rafael A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025429/ https://www.ncbi.nlm.nih.gov/pubmed/21144010 http://dx.doi.org/10.1186/gm208 |
Ejemplares similares
-
Effective detection of rare variants in pooled DNA samples using Cross-pool tailcurve analysis
por: Niranjan, Tejasvi S, et al.
Publicado: (2011) -
Effective detection of rare variants in pooled DNA samples using cross-pool tail-curve analysis
por: Niranjan, Tejasvi S, et al.
Publicado: (2011) -
Detection of TERT Promoter Mutations Using Targeted Next-Generation Sequencing: Overcoming GC Bias through Trial and Error
por: Lee, Hyunwoo, et al.
Publicado: (2022) -
Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data
por: Teng, Mingxiang, et al.
Publicado: (2017) -
Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
por: Love, Michael I., et al.
Publicado: (2016)