Cargando…
Silicon saw-tooth refractive lens for high-energy X-rays made using a diamond saw
Silicon is a material well suited for refractive lenses operating at high X-ray energies (>50 keV), particularly if implemented in a single-crystal form to minimize small-angle scattering. A single-crystal silicon saw-tooth refractive lens, fabricated by a dicing process using a thin diamond whee...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025659/ https://www.ncbi.nlm.nih.gov/pubmed/20400843 http://dx.doi.org/10.1107/S0909049510003584 |
Sumario: | Silicon is a material well suited for refractive lenses operating at high X-ray energies (>50 keV), particularly if implemented in a single-crystal form to minimize small-angle scattering. A single-crystal silicon saw-tooth refractive lens, fabricated by a dicing process using a thin diamond wheel, was tested with 115 keV X-rays, giving an ideal 17 µm line focus width in a long focal length, 2:1 ratio demagnification geometry, with a source-to-focus distance of 58.5 m. The fabrication is simple, using resources typically available at any synchrotron facility’s optics shop. |
---|