Cargando…
Promoter prediction in E. coli based on SIDD profiles and Artificial Neural Networks
BACKGROUND: One of the major challenges in biology is the correct identification of promoter regions. Computational methods based on motif searching have been the traditional approach taken. Recent studies have shown that DNA structural properties, such as curvature, stacking energy, and stress-indu...
Autores principales: | Bland, Charles, Newsome, Abigail S, Markovets, Aleksandra A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026364/ https://www.ncbi.nlm.nih.gov/pubmed/20946600 http://dx.doi.org/10.1186/1471-2105-11-S6-S17 |
Ejemplares similares
-
Analysis of cancer metabolism with high-throughput technologies
por: Markovets, Aleksandra A, et al.
Publicado: (2011) -
An artificial neural network for estimating haplotype frequencies
por: Cartier, Kevin C, et al.
Publicado: (2005) -
Expression of SidD gene and physiological characterization of the rhizosphere plant growth-promoting yeasts
por: El-Maraghy, Saad S., et al.
Publicado: (2020) -
Artificial neural networks for linkage analysis of quantitative gene expression phenotypes and evaluation of gene × gene interactions
por: Liu, Ying, et al.
Publicado: (2007) -
A deep neural network based regression model for triglyceride concentrations prediction using epigenome-wide DNA methylation profiles
por: Islam, Md. Mohaiminul, et al.
Publicado: (2018)