Cargando…
Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images
BACKGROUND: Computer-aided segmentation and border detection in dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopy images have become an important research field mainly because of inter- a...
Autores principales: | Kockara, Sinan, Mete, Mutlu, Chen, Bernard, Aydin, Kemal |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026373/ https://www.ncbi.nlm.nih.gov/pubmed/20946610 http://dx.doi.org/10.1186/1471-2105-11-S6-S26 |
Ejemplares similares
-
An improved border detection in dermoscopy images for density based clustering
por: Suer, Sait, et al.
Publicado: (2011) -
Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images
por: Kaya, Sertan, et al.
Publicado: (2016) -
Density-based parallel skin lesion border detection with webCL
por: Lemon, James, et al.
Publicado: (2015) -
A soft kinetic data structure for lesion border detection
por: Kockara, Sinan, et al.
Publicado: (2010) -
Lesion detection in demoscopy images with novel density-based and active contour approaches
por: Mete, Mutlu, et al.
Publicado: (2010)