Cargando…
Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism
BACKGROUND: Dynamic Bayesian Networks (DBNs) are widely used in regulatory network structure inference with gene expression data. Current methods assumed that the underlying stochastic processes that generate the gene expression data are stationary. The assumption is not realistic in certain applica...
Autores principales: | Jia, Yi, Huan, Jun |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026374/ https://www.ncbi.nlm.nih.gov/pubmed/20946611 http://dx.doi.org/10.1186/1471-2105-11-S6-S27 |
Ejemplares similares
-
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks
por: Meng, Jia, et al.
Publicado: (2011) -
Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks
por: Chaitankar, Vijender, et al.
Publicado: (2010) -
A CoD-based stationary control policy for intervening in large gene regulatory networks
por: Ghaffari, Noushin, et al.
Publicado: (2011) -
Bayesian mechanics for stationary processes
por: Da Costa, Lancelot, et al.
Publicado: (2021)