Cargando…
The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline
OBJECTIVE: The objective of the present study was to determine the ability of cerium oxide (CeO(2)) nanoparticles to protect against monocrotaline (MCT)-induced hepatotoxicity in a rat model. METHOD: Twenty male Sprague Dawley rats were arbitrarily assigned to four groups: control (received saline),...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026579/ https://www.ncbi.nlm.nih.gov/pubmed/21289991 http://dx.doi.org/10.2147/IJN.S15308 |
_version_ | 1782197057486848000 |
---|---|
author | Amin, Kamal A Hassan, Mohamed S Awad, El-Said T Hashem, Khalid S |
author_facet | Amin, Kamal A Hassan, Mohamed S Awad, El-Said T Hashem, Khalid S |
author_sort | Amin, Kamal A |
collection | PubMed |
description | OBJECTIVE: The objective of the present study was to determine the ability of cerium oxide (CeO(2)) nanoparticles to protect against monocrotaline (MCT)-induced hepatotoxicity in a rat model. METHOD: Twenty male Sprague Dawley rats were arbitrarily assigned to four groups: control (received saline), CeO(2) (given 0.0001 nmol/kg intraperitoneally [IP]), MCT (given 10 mg/kg body weight IP as a single dose), and MCT + CeO(2) (received CeO(2) both before and after MCT). Electron microscopic imaging of the rat livers was carried out, and hepatic total glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) enzymatic activities were quantified. RESULTS: Results showed a significant MCT-induced decrease in total hepatic GSH, GPX, GR, and GST normalized to control values with concurrent CeO(2) administration. In addition, MCT produced significant increases in hepatic CAT and SOD activities, which also ameliorated with CeO(2). CONCLUSIONS: These results indicate that CeO(2) acts as a putative novel and effective hepatoprotective agent against MCT-induced hepatotoxicity. |
format | Text |
id | pubmed-3026579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-30265792011-02-02 The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline Amin, Kamal A Hassan, Mohamed S Awad, El-Said T Hashem, Khalid S Int J Nanomedicine Original Research OBJECTIVE: The objective of the present study was to determine the ability of cerium oxide (CeO(2)) nanoparticles to protect against monocrotaline (MCT)-induced hepatotoxicity in a rat model. METHOD: Twenty male Sprague Dawley rats were arbitrarily assigned to four groups: control (received saline), CeO(2) (given 0.0001 nmol/kg intraperitoneally [IP]), MCT (given 10 mg/kg body weight IP as a single dose), and MCT + CeO(2) (received CeO(2) both before and after MCT). Electron microscopic imaging of the rat livers was carried out, and hepatic total glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) enzymatic activities were quantified. RESULTS: Results showed a significant MCT-induced decrease in total hepatic GSH, GPX, GR, and GST normalized to control values with concurrent CeO(2) administration. In addition, MCT produced significant increases in hepatic CAT and SOD activities, which also ameliorated with CeO(2). CONCLUSIONS: These results indicate that CeO(2) acts as a putative novel and effective hepatoprotective agent against MCT-induced hepatotoxicity. Dove Medical Press 2011 2011-01-17 /pmc/articles/PMC3026579/ /pubmed/21289991 http://dx.doi.org/10.2147/IJN.S15308 Text en © 2011 Amin et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Amin, Kamal A Hassan, Mohamed S Awad, El-Said T Hashem, Khalid S The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
title | The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
title_full | The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
title_fullStr | The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
title_full_unstemmed | The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
title_short | The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
title_sort | protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026579/ https://www.ncbi.nlm.nih.gov/pubmed/21289991 http://dx.doi.org/10.2147/IJN.S15308 |
work_keys_str_mv | AT aminkamala theprotectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT hassanmohameds theprotectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT awadelsaidt theprotectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT hashemkhalids theprotectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT aminkamala protectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT hassanmohameds protectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT awadelsaidt protectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline AT hashemkhalids protectiveeffectsofceriumoxidenanoparticlesagainsthepaticoxidativedamageinducedbymonocrotaline |