Cargando…
Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype
Vectorial capacity is a measure of the transmission potential of a vector borne pathogen within a susceptible population. Vector competence, a component of the vectorial capacity equation, is the ability of an arthropod to transmit an infectious agent following exposure to that agent. Comparisons of...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029343/ https://www.ncbi.nlm.nih.gov/pubmed/21298018 http://dx.doi.org/10.1371/journal.pone.0016298 |
_version_ | 1782197224385544192 |
---|---|
author | Christofferson, Rebecca C. Mores, Christopher N. |
author_facet | Christofferson, Rebecca C. Mores, Christopher N. |
author_sort | Christofferson, Rebecca C. |
collection | PubMed |
description | Vectorial capacity is a measure of the transmission potential of a vector borne pathogen within a susceptible population. Vector competence, a component of the vectorial capacity equation, is the ability of an arthropod to transmit an infectious agent following exposure to that agent. Comparisons of arbovirus strain-specific vector competence estimates have been used to support observed or hypothesized differences in transmission capability. Typically, such comparisons are made at a single time point during the extrinsic incubation period, the time in days it takes for the virus to replicate and disseminate to the salivary glands. However, vectorial capacity includes crucial parameters needed to effectively evaluate transmission capability, though often this is based on the discrete vector competence values. Utilization of the rate of change of vector competence over a range of days gives a more accurate measurement of the transmission potential. Accordingly, we investigated the rate of change in vector competence of dengue virus in Aedes aegypti mosquitoes and the resulting vectorial capacity curves. The areas under the curves represent the effective vector competence and the cumulative transmission potentials of arboviruses within a population of mosquitoes. We used the calculated area under the curve for each virus strain and the corresponding variance estimates to test for differences in cumulative transmission potentials between strains of dengue virus based on our dynamic model. To further characterize differences between dengue strains, we devised a displacement index interpreted as the capability of a newly introduced strain to displace the established, dominant circulating strain. The displacement index can be used to better understand the transmission dynamics in systems where multiple strains/serotypes circulate or even multiple arbovirus species. The use of a rate of a rate of change based model of vectorial capacity and the informative calculations of the displacement index will lead to better measurements of the differences in transmission potential of arboviruses. |
format | Text |
id | pubmed-3029343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30293432011-02-04 Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype Christofferson, Rebecca C. Mores, Christopher N. PLoS One Research Article Vectorial capacity is a measure of the transmission potential of a vector borne pathogen within a susceptible population. Vector competence, a component of the vectorial capacity equation, is the ability of an arthropod to transmit an infectious agent following exposure to that agent. Comparisons of arbovirus strain-specific vector competence estimates have been used to support observed or hypothesized differences in transmission capability. Typically, such comparisons are made at a single time point during the extrinsic incubation period, the time in days it takes for the virus to replicate and disseminate to the salivary glands. However, vectorial capacity includes crucial parameters needed to effectively evaluate transmission capability, though often this is based on the discrete vector competence values. Utilization of the rate of change of vector competence over a range of days gives a more accurate measurement of the transmission potential. Accordingly, we investigated the rate of change in vector competence of dengue virus in Aedes aegypti mosquitoes and the resulting vectorial capacity curves. The areas under the curves represent the effective vector competence and the cumulative transmission potentials of arboviruses within a population of mosquitoes. We used the calculated area under the curve for each virus strain and the corresponding variance estimates to test for differences in cumulative transmission potentials between strains of dengue virus based on our dynamic model. To further characterize differences between dengue strains, we devised a displacement index interpreted as the capability of a newly introduced strain to displace the established, dominant circulating strain. The displacement index can be used to better understand the transmission dynamics in systems where multiple strains/serotypes circulate or even multiple arbovirus species. The use of a rate of a rate of change based model of vectorial capacity and the informative calculations of the displacement index will lead to better measurements of the differences in transmission potential of arboviruses. Public Library of Science 2011-01-27 /pmc/articles/PMC3029343/ /pubmed/21298018 http://dx.doi.org/10.1371/journal.pone.0016298 Text en Christofferson, Mores. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Christofferson, Rebecca C. Mores, Christopher N. Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype |
title | Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype |
title_full | Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype |
title_fullStr | Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype |
title_full_unstemmed | Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype |
title_short | Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype |
title_sort | estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029343/ https://www.ncbi.nlm.nih.gov/pubmed/21298018 http://dx.doi.org/10.1371/journal.pone.0016298 |
work_keys_str_mv | AT christoffersonrebeccac estimatingthemagnitudeanddirectionofalteredarbovirustransmissionduetoviralphenotype AT moreschristophern estimatingthemagnitudeanddirectionofalteredarbovirustransmissionduetoviralphenotype |