Cargando…
The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma
The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employin...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Korean Nutrition Society and the Korean Society of Community Nutrition
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029785/ https://www.ncbi.nlm.nih.gov/pubmed/21286402 http://dx.doi.org/10.4162/nrp.2010.4.6.455 |
_version_ | 1782197237935243264 |
---|---|
author | Kim, Yuri |
author_facet | Kim, Yuri |
author_sort | Kim, Yuri |
collection | PubMed |
description | The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employing neuroblastoma (NB) cells. To investigate the effects of tumor malignancy and differentiation on apoptosis, the cells were exposed to poor microenvironments characterized as serum-free, low-glucose, and hypoxia. Incubation of the cells in serum-free and low-glucose environments significantly increased apoptosis in less malignant and more differentiated N-type IMR32 cells, whereas more malignant and less differentiated I-type BE(2)C cells were not affected by those treatments. In contrast, hypoxia (1% O(2)) did not affect apoptosis despite cell malignancy. It is suggested that DLK1 constitutes an important stem cell pathway for regulating self-renewal, clonogenicity, and tumorigenicity. This raises questions about the role of DLK1 in the cellular resistance of cancer cells under poor microenvironments, which cancer cells normally encounter. In the present study, DLK1 overexpression resulted in marked protection from apoptosis induced by nutrient deprivation. This in vitro model demonstrated that increasing severity of nutrition deprivation and knock-down of DLK1 caused greater apoptotic death, which could be a useful strategy for targeted therapies in fighting NB as well as for evaluating how nutrient deprived cells respond to therapeutic manipulation. |
format | Text |
id | pubmed-3029785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The Korean Nutrition Society and the Korean Society of Community Nutrition |
record_format | MEDLINE/PubMed |
spelling | pubmed-30297852011-01-31 The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma Kim, Yuri Nutr Res Pract Original Research The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employing neuroblastoma (NB) cells. To investigate the effects of tumor malignancy and differentiation on apoptosis, the cells were exposed to poor microenvironments characterized as serum-free, low-glucose, and hypoxia. Incubation of the cells in serum-free and low-glucose environments significantly increased apoptosis in less malignant and more differentiated N-type IMR32 cells, whereas more malignant and less differentiated I-type BE(2)C cells were not affected by those treatments. In contrast, hypoxia (1% O(2)) did not affect apoptosis despite cell malignancy. It is suggested that DLK1 constitutes an important stem cell pathway for regulating self-renewal, clonogenicity, and tumorigenicity. This raises questions about the role of DLK1 in the cellular resistance of cancer cells under poor microenvironments, which cancer cells normally encounter. In the present study, DLK1 overexpression resulted in marked protection from apoptosis induced by nutrient deprivation. This in vitro model demonstrated that increasing severity of nutrition deprivation and knock-down of DLK1 caused greater apoptotic death, which could be a useful strategy for targeted therapies in fighting NB as well as for evaluating how nutrient deprived cells respond to therapeutic manipulation. The Korean Nutrition Society and the Korean Society of Community Nutrition 2010-12 2010-12-28 /pmc/articles/PMC3029785/ /pubmed/21286402 http://dx.doi.org/10.4162/nrp.2010.4.6.455 Text en ©2010 The Korean Nutrition Society and the Korean Society of Community Nutrition http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Kim, Yuri The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma |
title | The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma |
title_full | The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma |
title_fullStr | The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma |
title_full_unstemmed | The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma |
title_short | The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma |
title_sort | effects of nutrient depleted microenvironments and delta-like 1 homologue (dlk1) on apoptosis in neuroblastoma |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029785/ https://www.ncbi.nlm.nih.gov/pubmed/21286402 http://dx.doi.org/10.4162/nrp.2010.4.6.455 |
work_keys_str_mv | AT kimyuri theeffectsofnutrientdepletedmicroenvironmentsanddeltalike1homologuedlk1onapoptosisinneuroblastoma AT kimyuri effectsofnutrientdepletedmicroenvironmentsanddeltalike1homologuedlk1onapoptosisinneuroblastoma |