Cargando…
A genome-wide survey of human short-term memory
Recent advances in the development of high-throughput genotyping platforms allow for the unbiased identification of genes and genomic sequences related to heritable traits. In this study, we analyzed human short-term memory, which refers to the ability to remember information over a brief period of...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030750/ https://www.ncbi.nlm.nih.gov/pubmed/20038948 http://dx.doi.org/10.1038/mp.2009.133 |
Sumario: | Recent advances in the development of high-throughput genotyping platforms allow for the unbiased identification of genes and genomic sequences related to heritable traits. In this study, we analyzed human short-term memory, which refers to the ability to remember information over a brief period of time and which has been found disturbed in many neuropsychiatric conditions, including schizophrenia and depression. We performed a genome-wide survey at 909 622 polymorphic loci and report six genetic variations significantly associated with human short-term memory performance after genome-wide correction for multiple comparisons. A polymorphism within SCN1A (encoding the α subunit of the type I voltage-gated sodium channel) was replicated in three independent populations of 1699 individuals. Functional magnetic resonance imaging during an n-back working memory task detected SCN1A allele-dependent activation differences in brain regions typically involved in working memory processes. These results suggest an important role for SCN1A in human short-term memory. |
---|