Cargando…
A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain–peptide interaction from primary sequence
Motivation: Predicting protein interactions involving peptide recognition domains is essential for understanding the many important biological processes they mediate. It is important to consider the binding strength of these interactions to help us construct more biologically relevant protein intera...
Autores principales: | Shao, Xiaojian, Tan, Chris S. H., Voss, Courtney, Li, Shawn S. C., Deng, Naiyang, Bader, Gary D. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031032/ https://www.ncbi.nlm.nih.gov/pubmed/21127034 http://dx.doi.org/10.1093/bioinformatics/btq657 |
Ejemplares similares
-
Predicting PDZ domain mediated protein interactions from structure
por: Hui, Shirley, et al.
Publicado: (2013) -
A physical model for PDZ-domain/peptide interactions
por: Kaufmann, Kristian, et al.
Publicado: (2010) -
Proteome scanning to predict PDZ domain interactions using support vector machines
por: Hui, Shirley, et al.
Publicado: (2010) -
PDZ Domain-Mediated Interactions of G Protein-Coupled Receptors with Postsynaptic Density Protein 95: Quantitative Characterization of Interactions
por: Møller, Thor C., et al.
Publicado: (2013) -
Interaction prediction and classification of PDZ domains
por: Kalyoncu, Sibel, et al.
Publicado: (2010)