Cargando…
An Enhanced Probabilistic LDA for Multi-Class Brain Computer Interface
BACKGROUND: There is a growing interest in the study of signal processing and machine learning methods, which may make the brain computer interface (BCI) a new communication channel. A variety of classification methods have been utilized to convert the brain information into control commands. Howeve...
Autores principales: | Xu, Peng, Yang, Ping, Lei, Xu, Yao, Dezhong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031502/ https://www.ncbi.nlm.nih.gov/pubmed/21297944 http://dx.doi.org/10.1371/journal.pone.0014634 |
Ejemplares similares
-
Enhanced Z-LDA for Small Sample Size Training in Brain-Computer Interface Systems
por: Gao, Dongrui, et al.
Publicado: (2015) -
Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application
por: Naseer, Noman, et al.
Publicado: (2016) -
Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface
por: Zhang, Yangsong, et al.
Publicado: (2012) -
An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface
por: Ma, Teng, et al.
Publicado: (2018) -
Z-Score Linear Discriminant Analysis for EEG Based Brain-Computer Interfaces
por: Zhang, Rui, et al.
Publicado: (2013)